knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "figures/", fig.width = 6, fig.height = 6, eval = FALSE )
Comparing a combined (i.e., processing samples together) and an independent (i.e., processing samples separately) construction of metacells with SuperCell (related to @daskelly question https://github.com/GfellerLab/SuperCell/issues/11#issuecomment-1090916447).
library(SuperCell) library(Matrix) data(cell_lines) GE <- cell_lines$GE cell.meta <- cell_lines$meta
gamma <- 20 # graining level n.pc <- 10 # number of PCs
To compare results, we use 2 samples that correspond to two different cancer cell lines (data from Tian et al., 2019)
cell.idx.HCC827 <- which(cell.meta == "HCC827") cell.idx.H838 <- which(cell.meta == "H838")
SC.HCC827.H838 <- SCimplify( GE[,c(cell.idx.HCC827, cell.idx.H838)], # log-normalized gene expression matrix gamma = gamma, # graining level cell.split.condition = cell.meta[c(cell.idx.HCC827, cell.idx.H838)], # metacell do not mix cells from different cell lines n.pc = n.pc) # number of proncipal components to use genes.use <- SC.HCC827.H838$genes.use SC.HCC827.H838$cell.line <- supercell_assign(cell.meta[c(cell.idx.HCC827, cell.idx.H838)], supercell_membership = SC.HCC827.H838$membership) SC.GE.HCC827.H838 <- supercell_GE(GE[,c(cell.idx.HCC827, cell.idx.H838)], groups = SC.HCC827.H838$membership) SC.HCC827.H838$SC_PCA <- supercell_prcomp( Matrix::t(SC.GE.HCC827.H838), supercell_size = SC.HCC827.H838$supercell_size, genes.use = genes.use) SC.HCC827.H838$SC_UMAP <- supercell_UMAP( SC.HCC827.H838, n_neighbors = 10) supercell_plot_UMAP( SC.HCC827.H838, group = "cell.line", title = paste0("Combined construction of HCC827 and H838 metacells") )
gamma
and the same set of features genes.use
)SC.HCC827 <- SCimplify(GE[,cell.idx.HCC827], # log-normalized gene expression matrix gamma = gamma, # graining level n.pc = n.pc, # number of proncipal components to use genes.use = genes.use) # using the same set of genes as for the combined analysis SC.HCC827$cell.line <- supercell_assign(cell.meta[cell.idx.HCC827], supercell_membership = SC.HCC827$membership) SC.H838 <- SCimplify(GE[,cell.idx.H838], # log-normalized gene expression matrix gamma = gamma, # graining level n.pc = n.pc, # number of proncipal components to use genes.use = genes.use) # using the same set of genes as for the combined analysis SC.H838$cell.line <- supercell_assign(cell.meta[cell.idx.H838], supercell_membership = SC.H838$membership) SC.merged <- supercell_merge(list(SC.HCC827, SC.H838), fields = c("cell.line")) # compute metacell gene expression for SC.HCC827 SC.GE.HCC827 <- supercell_GE(GE[, cell.idx.HCC827], groups = SC.HCC827$membership) # compute metacell gene expression for SC.H838 SC.GE.H838 <- supercell_GE(GE[, cell.idx.H838], groups = SC.H838$membership) # merge GE matricies SC.GE.merged <- supercell_mergeGE(list(SC.GE.HCC827, SC.GE.H838)) SC.merged$SC_PCA <- supercell_prcomp( Matrix::t(SC.GE.merged), supercell_size = SC.merged$supercell_size, genes.use = genes.use) SC.merged$SC_UMAP <- supercell_UMAP( SC.merged, n_neighbors = 10) g <- supercell_plot_UMAP( SC.merged, group = "cell.line", title = paste0("Independent construction of HCC827 and H838 metacells") )
As the dimensionality reductions (even on the same set of features) are different for the combined (HCC827+H838) dataset and for the independent (HCC827 and H838 separately) datasets. The first PCA basen on global variability between two cell lines and the PCAs from the second approach represent local variability within each cell line. (sample).
heatmap(as.matrix(table(SC.merged$membership, SC.HCC827.H838$membership)), scale = "none")
Metacell size distribution
summary(SC.merged$supercell_size) summary(SC.HCC827.H838$supercell_size)
Also, in the combined analysis, the graining level does not mean that each cell line (or sample) will have this particular graining level. For instance, in the combined analysis, the graining level for HCC827 is 18.6
and for H838 is 21.8
, but this difference might be even more prominent if the heterogeneity and complexity of two samples are more different.
## Combined analysis # actual graining level for H838 cell line length(cell.idx.H838)/sum(SC.HCC827.H838$cell.line == "H838") # actual graining level for H838 cell line length(cell.idx.HCC827)/sum(SC.HCC827.H838$cell.line == "HCC827") ## Independent analysis # actual graining level for H838 cell line length(cell.idx.H838)/sum(SC.merged$cell.line == "H838") # actual graining level for HCC827 cell line length(cell.idx.HCC827)/sum(SC.merged$cell.line == "HCC827") # actual overall graining level in the combined analysis length(SC.merged$membership)/max(SC.merged$membership)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.