Nothing
#' Plot TF Activities from decoupleR using Dorothea prior knowledge.
#'
#'
#' @inheritParams doc_function
#' @param activities \strong{\code{\link[tibble]{tibble}}} | Result of running decoupleR method with dorothea regulon prior knowledge.
#' @param n_tfs \strong{\code{\link[base]{numeric}}} | Number of top regulons to consider for downstream analysis.
#' @param tfs.use \strong{\code{\link[base]{character}}} | Restrict the analysis to given regulons.
#' @param enforce_symmetry \strong{\code{\link[base]{logical}}} | Whether the geyser and feature plot has a symmetrical color scale.
#'
#' @return A ggplot2 object.
#' @export
#'
#' @example /man/examples/examples_do_TFActivityPlot.R
do_TFActivityPlot <- function(sample,
activities,
n_tfs = 25,
slot = "scale.data",
statistic = "norm_wmean",
tfs.use = NULL,
group.by = NULL,
split.by = NULL,
na.value = "grey75",
legend.position = "bottom",
legend.width = 1,
legend.length = 20,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.framecolor = "grey50",
legend.tickcolor = "white",
legend.type = "colorbar",
font.size = 14,
font.type = "sans",
axis.text.x.angle = 45,
enforce_symmetry = TRUE,
diverging.palette = "RdBu",
diverging.direction = -1,
use_viridis = FALSE,
viridis.palette = "G",
viridis.direction = -1,
sequential.palette = "YlGnBu",
sequential.direction = 1,
min.cutoff = NA,
max.cutoff = NA,
number.breaks = 5,
flip = FALSE,
return_object = FALSE,
grid.color = "white",
border.color = "black",
plot.title.face = "bold",
plot.subtitle.face = "plain",
plot.caption.face = "italic",
axis.title.face = "bold",
axis.text.face = "plain",
legend.title.face = "bold",
legend.text.face = "plain"){
# Add lengthy error messages.
withr::local_options(.new = list("warning.length" = 8170))
check_suggests(function_name = "do_TFActivityPlot")
# Check if the sample provided is a Seurat object.
check_Seurat(sample = sample)
# Check logical parameters.
logical_list <- list("enforce_symmetry" = enforce_symmetry,
"flip" = flip,
"return_object" = return_object,
"use_viridis" = use_viridis)
check_type(parameters = logical_list, required_type = "logical", test_function = is.logical)
# Check numeric parameters.
numeric_list <- list("n_tfs" = n_tfs,
"font.size" = font.size,
"legend.width" = legend.width,
"legend.length" = legend.length,
"legend.framewidth" = legend.framewidth,
"legend.tickwidth" = legend.tickwidth,
"axis.text.x.angle" = axis.text.x.angle,
"min.cutoff" = min.cutoff,
"max.cutoff" = max.cutoff,
"number.breaks" = number.breaks,
"viridis.direction" = viridis.direction,
"sequential.direction" = sequential.direction,
"diverging.direction" = diverging.direction)
check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric)
# Check character parameters.
character_list <- list("group.by" = group.by,
"slot" = slot,
"split.by" = split.by,
"na.value" = na.value,
"legend.position" = legend.position,
"legend.framecolor" = legend.framecolor,
"font.type" = font.type,
"legend.tickcolor" = legend.tickcolor,
"legend.type" = legend.type,
"tfs.use" = tfs.use,
"viridis.palette" = viridis.palette,
"sequential.palette" = sequential.palette,
"statistic" = statistic,
"grid.color" = grid.color,
"border.color" = border.color,
"plot.title.face" = plot.title.face,
"plot.subtitle.face" = plot.subtitle.face,
"plot.caption.face" = plot.caption.face,
"axis.title.face" = axis.title.face,
"axis.text.face" = axis.text.face,
"legend.title.face" = legend.title.face,
"legend.text.face" = legend.text.face)
check_type(parameters = character_list, required_type = "character", test_function = is.character)
`%>%` <- magrittr::`%>%`
check_colors(legend.framecolor, parameter_name = "legend.framecolor")
check_colors(legend.tickcolor, parameter_name = "legend.tickcolor")
check_colors(na.value, parameter_name = "na.value")
check_colors(grid.color, parameter_name = "grid.color")
check_colors(border.color, parameter_name = "border.color")
check_parameters(parameter = font.type, parameter_name = "font.type")
check_parameters(parameter = legend.type, parameter_name = "legend.type")
check_parameters(parameter = legend.position, parameter_name = "legend.position")
check_parameters(parameter = axis.text.x.angle, parameter_name = "axis.text.x.angle")
check_parameters(parameter = number.breaks, parameter_name = "number.breaks")
check_parameters(parameter = diverging.palette, parameter_name = "diverging.palette")
check_parameters(plot.title.face, parameter_name = "plot.title.face")
check_parameters(plot.subtitle.face, parameter_name = "plot.subtitle.face")
check_parameters(plot.caption.face, parameter_name = "plot.caption.face")
check_parameters(axis.title.face, parameter_name = "axis.title.face")
check_parameters(axis.text.face, parameter_name = "axis.text.face")
check_parameters(legend.title.face, parameter_name = "legend.title.face")
check_parameters(legend.text.face, parameter_name = "legend.text.face")
check_parameters(viridis.direction, parameter_name = "viridis.direction")
check_parameters(sequential.direction, parameter_name = "sequential.direction")
check_parameters(diverging.direction, parameter_name = "diverging.direction")
# Generate the continuous color palette.
if (isTRUE(enforce_symmetry)){
colors.gradient <- compute_continuous_palette(name = diverging.palette,
use_viridis = FALSE,
direction = diverging.direction,
enforce_symmetry = enforce_symmetry)
} else {
colors.gradient <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette, sequential.palette),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = enforce_symmetry)
}
sample[['dorothea']] <- activities %>%
dplyr::filter(.data$statistic == .env$statistic) %>%
tidyr::pivot_wider(id_cols = 'source',
names_from = 'condition',
values_from = 'score') %>%
tibble::column_to_rownames('source') %>%
Seurat::CreateAssayObject()
Seurat::DefaultAssay(sample) <- "dorothea"
sample@assays$dorothea@key <- "dorothea_"
# Scale the data.
sample <- Seurat::ScaleData(sample, verbose = FALSE)
if (!is.null(split.by) & !is.null(group.by)){
assertthat::assert_that(length(group.by) == 1,
msg = paste0(add_cross(), crayon_body("When using "),
crayon_key("split.by"),
crayon_body(" make sure you only provide a single value to "),
crayon_key("group.by"),
crayon_body(". Otherwise, the prot will not keep the proportions. This is a design choice. Thanks!")))
}
if (is.null(group.by)) {
sample$Groups <- Seurat::Idents(sample)
sample$group.by <- sample$Groups
group.by <- "Groups"
}
# Plotting
list.out <- list()
matrix.list <- list()
list.tfs <- list()
for (group in group.by){
# Extract activities from object as a long dataframe
suppressMessages({
sample$group.by <- sample@meta.data[, group]
suppressWarnings({
df <- t(as.matrix(SeuratObject::GetAssayData(object = sample,
assay = "dorothea",
slot = slot))) %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "cell") %>%
dplyr::left_join(y = {sample@meta.data[, "group.by", drop = FALSE] %>%
tibble::rownames_to_column(var = "cell")},
by = "cell") %>%
dplyr::select(-"cell") %>%
tidyr::pivot_longer(cols = -"group.by",
names_to = "source",
values_to = "score") %>%
dplyr::group_by(.data$group.by, .data$source) %>%
dplyr::summarise(mean = mean(.data$score, na.rm = TRUE))
df.order <- df
})
if (!is.null(split.by)){
sample$split.by <- sample@meta.data[, split.by]
suppressWarnings({
df.split <- t(as.matrix(SeuratObject::GetAssayData(object = sample,
assay = "dorothea",
slot = slot))) %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "cell") %>%
dplyr::left_join(y = {sample@meta.data[, c("group.by", "split.by"), drop = FALSE] %>%
tibble::rownames_to_column(var = "cell")},
by = "cell") %>%
dplyr::select(-"cell") %>%
tidyr::pivot_longer(cols = -c("group.by", "split.by"),
names_to = "source",
values_to = "score") %>%
dplyr::group_by(.data$split.by, .data$group.by, .data$source) %>%
dplyr::summarise(mean = mean(.data$score, na.rm = TRUE))
matrix.list[[group]][["df.split"]] <- df.split
})
}
})
# Get top tfs with more variable means across clusters
tfs <- df.order %>%
dplyr::group_by(.data$source) %>%
dplyr::summarise(std = stats::sd(.data$mean, na.rm = TRUE)) %>%
dplyr::arrange(-abs(.data$std)) %>%
dplyr::slice_head(n = n_tfs) %>%
dplyr::pull(.data$source)
matrix.list[[group]][["df"]] <- df
matrix.list[[group]][["df.order"]] <- df.order
list.tfs[[group]] <- tfs
}
shared_tfs <- NULL
if (is.null(tfs.use)){
for (group in group.by){
shared_tfs <- append(shared_tfs, list.tfs[[group]])
}
shared_tfs <- unique(shared_tfs)
} else {
shared_tfs <- unique(tfs.use[tfs.use %in% rownames(sample)])
}
counter <- 0
for (group in group.by){
counter <- counter + 1
df <- matrix.list[[group]][["df"]]
df.order <- matrix.list[[group]][["df.order"]]
# Subset long data frame to top tfs and transform to wide matrix
data <- df %>%
dplyr::filter(.data$source %in% shared_tfs)
if (!is.null(split.by)){
df.split <- matrix.list[[group]][["df.split"]]
data <- df.split %>%
dplyr::filter(.data$source %in% shared_tfs)
}
# Transform to wide to retrieve the hclust.
df.order <- df.order %>%
dplyr::filter(.data$source %in% shared_tfs) %>%
tidyr::pivot_wider(id_cols = "group.by",
names_from = 'source',
values_from = 'mean') %>%
tibble::column_to_rownames("group.by") %>%
as.matrix()
df.order[is.na(df.order)] <- 0
if(length(rownames(df.order)) == 1){
row_order <- rownames(df.order)[1]
} else {
row_order <- rownames(df.order)[stats::hclust(stats::dist(df.order, method = "euclidean"), method = "ward.D")$order]
}
if (counter == 1){
# nocov start
if (length(colnames(df.order)) == 1){
col_order <- colnames(df.order)[1]
# nocov end
} else {
col_order <- colnames(df.order)[stats::hclust(stats::dist(t(df.order), method = "euclidean"), method = "ward.D")$order]
}
}
data <- data %>%
dplyr::mutate("source" = factor(.data$source, levels = rev(col_order)),
"group.by" = factor(.data$group.by, levels = row_order))
matrix.list[[group]][["data.mean"]] <- data
if (!is.na(min.cutoff)){
data <- data %>%
dplyr::mutate("mean" = ifelse(.data$mean < min.cutoff, min.cutoff, .data$mean))
}
if (!is.na(max.cutoff)){
data <- data %>%
dplyr::mutate("mean" = ifelse(.data$mean > max.cutoff, max.cutoff, .data$mean))
}
matrix.list[[group]][["data"]] <- data
}
# Compute limits.
min.vector <- NULL
max.vector <- NULL
for (group in group.by){
data <- matrix.list[[group]][["data.mean"]]
min.vector <- append(min.vector, min(data$mean, na.rm = TRUE))
max.vector <- append(max.vector, max(data$mean, na.rm = TRUE))
}
# Get the absolute limits of the datasets.
limits <- c(min(min.vector),
max(max.vector))
# Compute overarching scales for all heatmaps.
scale.setup <- compute_scales(sample = sample,
feature = " ",
assay = "dorothea",
reduction = NULL,
slot = slot,
number.breaks = number.breaks,
min.cutoff = min.cutoff,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = enforce_symmetry,
from_data = TRUE,
limits.use = limits)
# Plot individual heatmaps.
counter <- 0
list.heatmaps <- list()
for (group in group.by){
counter <- counter + 1
data <- matrix.list[[group]][["data"]]
p <- data %>%
# nocov start
ggplot2::ggplot(mapping = ggplot2::aes(x = if(base::isFALSE(flip)){.data$source} else {.data$group.by},
y = if(base::isFALSE(flip)){.data$group.by} else {.data$source},
fill = .data$mean)) +
# nocov end
ggplot2::geom_tile(color = grid.color, linewidth = 0.5) +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(.data$group.by))),
x.sec = guide_axis_label_trans(~paste0(levels(.data$source)))) +
ggplot2::coord_equal() +
ggplot2::scale_fill_gradientn(colors = colors.gradient,
na.value = na.value,
name = paste0("Regulon score | ", statistic, ifelse(slot == "scale.data", " | Scaled + Centered", "")),
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
if (!is.null(split.by)){
p <- p +
ggplot2::facet_grid(.data$split.by ~ .,
drop = FALSE,
switch = "y")
}
p <- modify_continuous_legend(p = p,
legend.title = paste0("Regulon score | ", statistic),
legend.aes = "fill",
legend.type = legend.type,
legend.position = legend.position,
legend.length = legend.length,
legend.width = legend.width,
legend.framecolor = legend.framecolor,
legend.tickcolor = legend.tickcolor,
legend.framewidth = legend.framewidth,
legend.tickwidth = legend.tickwidth)
# nocov start
# Set axis titles.
if (base::isFALSE(flip)){
if (counter == 1){
if (length(group.by) > 1){
xlab <- NULL
} else {
xlab <- "Regulon"
}
ylab <- group
} else {
if (length(group.by) > 1){
if (counter == length(group.by)){
xlab <- "Regulon"
} else {
xlab <- NULL
}
} else {
xlab <- NULL
}
ylab <- group
}
} else {
if (counter == 1){
ylab <- "Regulon"
xlab <- group
} else {
ylab <- NULL
xlab <- group
}
}
# nocov end
axis.parameters <- handle_axis(flip = flip,
group.by = group.by,
group = group,
counter = counter,
axis.text.x.angle = axis.text.x.angle,
plot.title.face = plot.title.face,
plot.subtitle.face = plot.subtitle.face,
plot.caption.face = plot.caption.face,
axis.title.face = axis.title.face,
axis.text.face = axis.text.face,
legend.title.face = legend.title.face,
legend.text.face = legend.text.face)
# Set theme
p <- p +
ggplot2::xlab(xlab) +
ggplot2::ylab(ylab) +
ggplot2::theme_minimal(base_size = font.size) +
ggplot2::theme(axis.ticks.x.bottom = axis.parameters$axis.ticks.x.bottom,
axis.ticks.x.top = axis.parameters$axis.ticks.x.top,
axis.ticks.y.left = axis.parameters$axis.ticks.y.left,
axis.ticks.y.right = axis.parameters$axis.ticks.y.right,
axis.text.y.left = axis.parameters$axis.text.y.left,
axis.text.y.right = axis.parameters$axis.text.y.right,
axis.text.x.top = axis.parameters$axis.text.x.top,
axis.text.x.bottom = axis.parameters$axis.text.x.bottom,
axis.title.x.bottom = axis.parameters$axis.title.x.bottom,
axis.title.x.top = axis.parameters$axis.title.x.top,
axis.title.y.right = axis.parameters$axis.title.y.right,
axis.title.y.left = axis.parameters$axis.title.y.left,
strip.background = axis.parameters$strip.background,
strip.clip = axis.parameters$strip.clip,
strip.text = axis.parameters$strip.text,
legend.position = if (is.null(split.by)) {legend.position} else {"bottom"},
axis.line = ggplot2::element_blank(),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
legend.text = ggplot2::element_text(face = legend.text.face),
legend.title = ggplot2::element_text(face = legend.title.face),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
panel.grid.minor.y = ggplot2::element_line(color = "white", linewidth = 1),
text = ggplot2::element_text(family = font.type),
plot.caption.position = "plot",
legend.justification = "center",
plot.margin = ggplot2::margin(t = 0, r = 10, b = 0, l = 10),
panel.border = ggplot2::element_rect(fill = NA, color = border.color, linewidth = 1),
panel.grid.major = ggplot2::element_blank(),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.spacing.x = ggplot2::unit(0, "cm"))
list.heatmaps[[group]] <- p
}
# Plot the combined plot
input <- if(base::isFALSE(flip)){list.heatmaps[rev(group.by)]}else{list.heatmaps[group.by]}
p <- patchwork::wrap_plots(input,
ncol = if (base::isFALSE(flip)){1} else {NULL},
nrow = if(isTRUE(flip)) {1} else {NULL},
guides = "collect")
p <- p +
patchwork::plot_annotation(theme = ggplot2::theme(legend.position = legend.position,
plot.title = ggplot2::element_text(family = font.type,
color = "black",
face = plot.title.face,
hjust = 0),
plot.subtitle = ggplot2::element_text(family = font.type,
face = plot.subtitle.face,
color = "black",
hjust = 0),
plot.caption = ggplot2::element_text(family = font.type,
face = plot.caption.face,
color = "black",
hjust = 1),
plot.caption.position = "plot"))
list.out[["Heatmap"]] <- p
if (isTRUE(return_object)){
list.out[["Object"]] <- sample
return_me <- list.out
} else{
return_me <- list.out[["Heatmap"]]
}
return(return_me)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.