Nothing
#' Compute a heatmap with the results of a group-wise DE analysis.
#'
#' @inheritParams doc_function
#' @param de_genes \strong{\code{\link[tibble]{tibble}}} | DE genes matrix resulting of running `Seurat::FindAllMarkers()`.
#' @param top_genes \strong{\code{\link[base]{numeric}}} | Top N differentially expressed (DE) genes by group to retrieve.
#'
#' @return A heatmap composed of 3 main panels: -log10(adjusted p-value), log2(FC) and mean expression by cluster.
#' @export
#'
#' @example /man/examples/examples_do_GroupwiseDEPlot.R
do_GroupwiseDEPlot <- function(sample,
de_genes,
group.by = NULL,
number.breaks = 5,
top_genes = 5,
use_viridis = FALSE,
viridis.direction = -1,
viridis.palette.pvalue = "C",
viridis.palette.logfc = "E",
viridis.palette.expression = "G",
sequential.direction = 1,
sequential.palette.pvalue = "YlGn",
sequential.palette.logfc = "YlOrRd",
sequential.palette.expression = "YlGnBu",
assay = NULL,
slot = "data",
legend.position = "bottom",
legend.width = 1,
legend.length = 20,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.framecolor = "grey50",
legend.tickcolor = "white",
legend.type = "colorbar",
font.size = 14,
font.type = "sans",
axis.text.x.angle = 45,
min.cutoff = NA,
max.cutoff = NA,
na.value = "grey75",
grid.color = "white",
border.color = "black",
plot.title.face = "bold",
plot.subtitle.face = "plain",
plot.caption.face = "italic",
axis.title.face = "bold",
axis.text.face = "plain",
legend.title.face = "bold",
legend.text.face = "plain"){
# Add lengthy error messages.
withr::local_options(.new = list("warning.length" = 8170))
check_suggests(function_name = "do_GroupwiseDEPlot")
# Check if the sample provided is a Seurat object.
check_Seurat(sample = sample)
logical_list <- list("use_viridis" = use_viridis)
check_type(parameters = logical_list, required_type = "logical", test_function = is.logical)
# Check numeric parameters.
numeric_list <- list("number.breaks" = number.breaks,
"top_genes" = top_genes,
"viridis.direction" = viridis.direction,
"legend.width" = legend.width,
"legend.length" = legend.length,
"legend.framewidth" = legend.framewidth,
"legend.tickwidth" = legend.tickwidth,
"font.size" = font.size,
"axis.text.x.angle" = axis.text.x.angle,
"min.cutoff" = min.cutoff,
"max.cutoff" = max.cutoff)
check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric)
# Check character parameters.
character_list <- list("group.by" = group.by,
"slot" = slot,
"legend.position" = legend.position,
"legend.framecolor" = legend.framecolor,
"legend.tickcolor" = legend.tickcolor,
"legend.type" = legend.type,
"font.type" = font.type,
"viridis.palette.pvalue" = viridis.palette.pvalue,
"viridis.palette.logfc" = viridis.palette.logfc,
"viridis.palette.expression" = viridis.palette.expression,
"sequential.palette.pvalue" = sequential.palette.pvalue,
"sequential.palette.logfc" = sequential.palette.logfc,
"sequential.palette.expression" = sequential.palette.expression,
"na.value" = na.value,
"grid.color" = grid.color,
"border.color" = border.color,
"plot.title.face" = plot.title.face,
"plot.subtitle.face" = plot.subtitle.face,
"plot.caption.face" = plot.caption.face,
"axis.title.face" = axis.title.face,
"axis.text.face" = axis.text.face,
"legend.title.face" = legend.title.face,
"legend.text.face" = legend.text.face)
check_type(parameters = character_list, required_type = "character", test_function = is.character)
`%>%` <- magrittr::`%>%`
`:=` <- rlang::`:=`
check_colors(legend.framecolor, parameter_name = "legend.framecolor")
check_colors(legend.tickcolor, parameter_name = "legend.tickcolor")
check_colors(na.value, parameter_name = "na.value")
check_colors(grid.color, parameter_name = "grid.color")
check_colors(border.color, parameter_name = "border.color")
check_parameters(parameter = legend.position, parameter_name = "legend.position")
check_parameters(parameter = viridis.palette.pvalue, parameter_name = "viridis_color_map")
check_parameters(parameter = viridis.palette.logfc, parameter_name = "viridis_color_map")
check_parameters(parameter = viridis.palette.expression, parameter_name = "viridis_color_map")
check_parameters(parameter = sequential.palette.pvalue, parameter_name = "sequential.palette")
check_parameters(parameter = sequential.palette.logfc, parameter_name = "sequential.palette")
check_parameters(parameter = sequential.palette.expression, parameter_name = "sequential.palette")
check_parameters(plot.title.face, parameter_name = "plot.title.face")
check_parameters(plot.subtitle.face, parameter_name = "plot.subtitle.face")
check_parameters(plot.caption.face, parameter_name = "plot.caption.face")
check_parameters(axis.title.face, parameter_name = "axis.title.face")
check_parameters(axis.text.face, parameter_name = "axis.text.face")
check_parameters(legend.title.face, parameter_name = "legend.title.face")
check_parameters(legend.text.face, parameter_name = "legend.text.face")
check_parameters(viridis.direction, parameter_name = "viridis.direction")
check_parameters(sequential.direction, parameter_name = "sequential.direction")
# Check the assay.
out <- check_and_set_assay(sample = sample, assay = assay)
sample <- out[["sample"]]
assay <- out[["assay"]]
# Check group.by.
out <- check_group_by(sample = sample,
group.by = group.by,
is.heatmap = TRUE)
sample <- out[["sample"]]
group.by <- out[["group.by"]]
colors.gradient.pvalue <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette.pvalue, sequential.palette.pvalue),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = FALSE)
colors.gradient.expression <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette.expression, sequential.palette.expression),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = FALSE)
colors.gradient.logfc <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette.logfc, sequential.palette.logfc),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = FALSE)
magnitude <- ifelse(slot == "data", "avg_log2FC", "avg_diff")
specificity <- "p_val_adj"
# Compute the top N genes per cluster.
genes.use <- de_genes %>%
dplyr::arrange(.data$p_val_adj, dplyr::desc(.data[[magnitude]])) %>%
dplyr::group_by(.data$cluster) %>%
dplyr::slice_head(n = top_genes) %>%
dplyr::pull("gene") %>%
unique()
# Compute heatmap of log2FC.
data.use <- de_genes %>%
dplyr::arrange(.data[[specificity]], dplyr::desc(.data[[magnitude]])) %>%
dplyr::group_by(.data$cluster) %>%
dplyr::slice_head(n = top_genes) %>%
dplyr::select(dplyr::all_of(c("gene", "cluster", magnitude, specificity)))
max.cutoff.pval <- ceiling(-1 * (data.use %>% dplyr::filter(.data$p_val_adj != 0) %>% dplyr::pull(.data$p_val_adj) %>% min(na.rm = TRUE) %>% log10()))
data.use <- data.use %>%
dplyr::mutate("-log10_padj" = -1 * log10(.data$p_val_adj),
"-log10_padj" = ifelse(is.infinite(.data$`-log10_padj`), max.cutoff.pval, .data$`-log10_padj`)) %>%
dplyr::mutate("specificity" = .data$`-log10_padj`,
"magnitude" = .data[[magnitude]])
# Add missing data.
data.use <- data.use %>%
dplyr::mutate("combination" = paste0(.data$gene, "_", .data$cluster))
for (cluster in unique(data.use$cluster)){
for (gene in unique(data.use$gene)){
combination <- paste0(gene, "_", cluster)
if (!combination %in% data.use$combination){
row.add <- tibble::tibble("gene" = gene,
"cluster" = cluster,
"{magnitude}" := NA,
"p_val_adj" = NA,
"-log10_padj" = NA,
"specificity" = NA,
"magnitude" = NA,
"combination" = combination)
data.use <- rbind(data.use, row.add)
}
}
}
data.use <- data.use %>%
dplyr::select(-dplyr::all_of("combination")) %>%
dplyr::mutate("gene" = factor(.data$gene, levels = genes.use),
"cluster" = factor(.data$cluster, levels = rev(unique(data.use$cluster))))
limits <- c(min(data.use$specificity, na.rm = TRUE),
max.cutoff.pval)
scale.setup <- compute_scales(sample = sample,
feature = " ",
assay = assay,
reduction = NULL,
slot = slot,
number.breaks = number.breaks,
min.cutoff = NA,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = FALSE,
from_data = TRUE,
limits.use = limits)
list.plots <- list()
p <- data.use %>%
ggplot2::ggplot(mapping = ggplot2::aes(x = .data$gene,
y = .data$cluster,
fill = .data$specificity)) +
ggplot2::geom_tile(color = grid.color, linewidth = 0.5) +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(.data$cluster))),
x.sec = guide_axis_label_trans(~paste0(levels(.data$gene)))) +
ggplot2::coord_equal() +
ggplot2::scale_fill_gradientn(colors = colors.gradient.pvalue,
na.value = na.value,
name = expression(bold(paste("-", log["10"], "(p.adjust)"))),
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
list.plots[["pval"]] <- p
# Heatmap of avg_log2FC.
limits <- c(min(data.use$magnitude, na.rm = TRUE),
max(data.use$magnitude, na.rm = TRUE))
scale.setup <- compute_scales(sample = sample,
feature = " ",
assay = assay,
reduction = NULL,
slot = slot,
number.breaks = number.breaks,
min.cutoff = NA,
max.cutoff = NA,
flavor = "Seurat",
enforce_symmetry = FALSE,
from_data = TRUE,
limits.use = limits)
p <- data.use %>%
ggplot2::ggplot(mapping = ggplot2::aes(x = .data$gene,
y = .data$cluster,
fill = .data$magnitude)) +
ggplot2::geom_tile(color = grid.color, linewidth = 0.5) +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(.data$cluster))),
x.sec = guide_axis_label_trans(~paste0(levels(.data$gene)))) +
ggplot2::coord_equal() +
ggplot2::scale_fill_gradientn(colors = colors.gradient.logfc,
na.value = na.value,
name = expression(bold(paste("Avg. ", log["2"], "(FC)"))),
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
list.plots[["FC"]] <- p
# Add averaged expression data.
list.exp <- list()
for (group in group.by){
order.use <- if (is.factor(sample@meta.data[, group])){levels(sample@meta.data[, group])} else {sort(unique(sample@meta.data[, group]))}
suppressWarnings({
data <- SeuratObject::GetAssayData(sample,
assay = assay,
slot = slot)[genes.use, ] %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "gene") %>%
tidyr::pivot_longer(cols = -dplyr::all_of("gene"),
names_to = "cell",
values_to = "expression") %>%
dplyr::left_join(y = {sample@meta.data %>%
tibble::rownames_to_column(var = "cell") %>%
dplyr::select(dplyr::all_of(c("cell", group)))},
by = "cell") %>%
dplyr::group_by(.data$gene, .data[[group]]) %>%
dplyr::summarize("Avg.Exp" = mean(.data$expression)) %>%
dplyr::mutate("gene" = factor(.data$gene, levels = genes.use),
"Group" = factor(.data[[group]], levels = rev(order.use)))
list.exp[[group]] <- data
})
}
# Compute limits.
min.vector <- NULL
max.vector <- NULL
for (group in group.by){
data.limits <- list.exp[[group]]
min.vector <- append(min.vector, min(data.limits$Avg.Exp, na.rm = TRUE))
max.vector <- append(max.vector, max(data.limits$Avg.Exp, na.rm = TRUE))
}
# Get the absolute limits of the datasets.
limits <- c(min(min.vector, na.rm = TRUE),
max(max.vector, na.rm = TRUE))
# Compute overarching scales for all heatmaps.
scale.setup <- compute_scales(sample = sample,
feature = " ",
assay = assay,
reduction = NULL,
slot = slot,
number.breaks = number.breaks,
min.cutoff = min.cutoff,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = FALSE,
from_data = TRUE,
limits.use = limits)
for (group in group.by){
data <- list.exp[[group]]
if (!is.na(min.cutoff)){
data <- data %>%
dplyr::mutate("Avg.Exp" = ifelse(.data$Avg.Exp < min.cutoff, min.cutoff, .data$Avg.Exp))
}
if (!is.na(max.cutoff)){
data <- data %>%
dplyr::mutate("Avg.Exp" = ifelse(.data$Avg.Exp > max.cutoff, max.cutoff, .data$Avg.Exp))
}
p <- data %>%
ggplot2::ggplot(mapping = ggplot2::aes(x = .data$gene,
y = .data$Group,
fill = .data$Avg.Exp)) +
ggplot2::geom_tile(color = grid.color, linewidth = 0.5) +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(.data$Group))),
x.sec = guide_axis_label_trans(~paste0(levels(.data$gene)))) +
ggplot2::coord_equal() +
ggplot2::scale_fill_gradientn(colors = colors.gradient.expression,
na.value = na.value,
name = "Avg. Expression",
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
list.plots[[group]] <- p
}
# Modify legends.
for (name in names(list.plots)){
p <- list.plots[[name]]
p <- modify_continuous_legend(p = p,
legend.aes = "fill",
legend.type = legend.type,
legend.position = legend.position,
legend.length = legend.length,
legend.width = legend.width,
legend.framecolor = legend.framecolor,
legend.tickcolor = legend.tickcolor,
legend.framewidth = legend.framewidth,
legend.tickwidth = legend.tickwidth)
list.plots[[name]] <- p
}
# Add theme
counter <- 0
for (name in rev(names(list.plots))){
if (name == "pval"){
xlab <- "Genes"
ylab <- expression(bold(paste("-", log["10"], "(p.adjust)")))
} else if (name == "FC"){
xlab <- NULL
ylab <- expression(bold(paste("Avg. ", log["2"], "(FC)")))
} else {
xlab <- NULL
ylab <- paste0("Avg. Exp | ", name)
}
counter <- counter + 1
p <- list.plots[[name]]
axis.parameters <- handle_axis(flip = FALSE,
group.by = rep("A", length(names(list.plots))),
group = name,
counter = counter,
axis.text.x.angle = axis.text.x.angle,
plot.title.face = plot.title.face,
plot.subtitle.face = plot.subtitle.face,
plot.caption.face = plot.caption.face,
axis.title.face = axis.title.face,
axis.text.face = axis.text.face,
legend.title.face = legend.title.face,
legend.text.face = legend.text.face)
p <- p +
ggplot2::xlab(xlab) +
ggplot2::ylab(ylab) +
ggplot2::theme_minimal(base_size = font.size) +
ggplot2::theme(axis.ticks.x.bottom = axis.parameters$axis.ticks.x.bottom,
axis.ticks.x.top = axis.parameters$axis.ticks.x.top,
axis.ticks.y.left = axis.parameters$axis.ticks.y.left,
axis.ticks.y.right = axis.parameters$axis.ticks.y.right,
axis.text.y.left = axis.parameters$axis.text.y.left,
axis.text.y.right = axis.parameters$axis.text.y.right,
axis.text.x.top = axis.parameters$axis.text.x.top,
axis.text.x.bottom = axis.parameters$axis.text.x.bottom,
axis.title.x.bottom = axis.parameters$axis.title.x.bottom,
axis.title.x.top = axis.parameters$axis.title.x.top,
axis.title.y.right = axis.parameters$axis.title.y.right,
axis.title.y.left = axis.parameters$axis.title.y.left,
strip.background = axis.parameters$strip.background,
strip.clip = axis.parameters$strip.clip,
strip.text = axis.parameters$strip.text,
legend.position = legend.position,
axis.line = ggplot2::element_blank(),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
legend.text = ggplot2::element_text(face = legend.text.face),
legend.title = ggplot2::element_text(face = legend.title.face),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
panel.grid.minor.y = ggplot2::element_line(color = "white", linewidth = 1),
text = ggplot2::element_text(family = font.type),
plot.caption.position = "plot",
legend.justification = "center",
plot.margin = ggplot2::margin(t = 5, r = 0, b = 0, l = 0),
panel.border = ggplot2::element_rect(fill = NA, color = border.color, linewidth = 1),
panel.grid.major = ggplot2::element_blank(),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.spacing.x = ggplot2::unit(0, "cm"))
list.plots[[name]] <- p
}
p <- patchwork::wrap_plots(list.plots,
ncol = 1,
guides = "collect")
p <- p +
patchwork::plot_annotation(theme = ggplot2::theme(legend.position = legend.position,
plot.title = ggplot2::element_text(family = font.type,
color = "black",
face = plot.title.face,
hjust = 0),
plot.subtitle = ggplot2::element_text(family = font.type,
face = plot.subtitle.face,
color = "black",
hjust = 0),
plot.caption = ggplot2::element_text(family = font.type,
face = plot.caption.face,
color = "black",
hjust = 1),
plot.caption.position = "plot"))
# Return the final heatmap.
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.