Nothing
#' Cellular States plot.
#'
#' This plot aims to show the relationships between distinct enrichment scores. If 3 variables are provided, the relationship is between the Y axis and the dual X axis.
#' If 4 variables are provided, each corner of the plot represents how enriched the cells are in that given list. How to interpret this? In a 3-variable plot, the Y axis
#' just means one variable. The higher the cells are in the Y axis the more enriched they are in that given variable. The X axis is a dual parameter one. Cells falling
#' into each extreme of the axis are highly enriched for either x1 or x2, while cells falling in between are not enriched for any of the two. In a 4-variable plot, each corner
#' shows the enrichment for one of the 4 given features. Cells will tend to locate in either of the four corners, but there will be cases of cells locating mid-way between two
#' given corners (enriched in both features) or in the middle of the plot (not enriched for any).
#'
#' This plots are based on the following publications:
#' - Neftel, C. \emph{et al}. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 178, 835-849.e21 (2019). \doi{10.1016/j.cell.2019.06.024}
#' - Tirosh, I., Venteicher, A., Hebert, C. \emph{et al}. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016). \doi{10.1038/nature20123}
#' @inheritParams doc_function
#' @param x1 \strong{\code{\link[base]{character}}} | A name of a list from input_gene_list. First feature in the X axis. Will go on the right side of the X axis if y2 is not provided and top-right quadrant if provided.
#' @param x2 \strong{\code{\link[base]{character}}} | A name of a list from input_gene_list. Second feature on the X axis. Will go on the left side of the X axis if y2 is not provided and top-left quadrant if provided.
#' @param y1 \strong{\code{\link[base]{character}}} | A name of a list from input_gene_list. First feature on the Y axis. Will become the Y axis if y2 is not provided and bottom-right quadrant if provided.
#' @param y2 \strong{\code{\link[base]{character}}} | A name of a list from input_gene_list. Second feature on the Y axis. Will become the bottom-left quadrant if provided.
#' @param axis.ticks \strong{\code{\link[base]{logical}}} | Whether to show axis ticks.
#' @param axis.text \strong{\code{\link[base]{logical}}} | Whether to show axis text.
#' @param enforce_symmetry \strong{\code{\link[base]{logical}}} | Whether to enforce the plot to follow a symmetry (3 variables, the X axis has 0 as center, 4 variables, all axis have the same range and the plot is squared).
#' @param plot_features \strong{\code{\link[base]{logical}}} | Whether to also report any other feature onto the primary plot.
#' @param features \strong{\code{\link[base]{character}}} | Additional features to plot.
#' @param plot_enrichment_scores \strong{\code{\link[base]{logical}}} | Whether to report enrichment scores for the input lists as plots.
#'
#' @return A ggplot2 object containing a butterfly plot.
#' @export
#' @example man/examples/examples_do_CellularStatesPlot.R
do_CellularStatesPlot <- function(sample,
input_gene_list,
x1,
y1,
x2 = NULL,
y2 = NULL,
group.by = NULL,
colors.use = NULL,
legend.position = "bottom",
legend.icon.size = 4,
legend.ncol = NULL,
legend.nrow = NULL,
legend.byrow = FALSE,
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
font.size = 14,
font.type = "sans",
xlab = NULL,
ylab = NULL,
axis.ticks = TRUE,
axis.text = TRUE,
verbose = FALSE,
enforce_symmetry = FALSE,
plot_marginal_distributions = FALSE,
marginal.type = "density",
marginal.size = 5,
marginal.group = TRUE,
plot_cell_borders = TRUE,
plot_enrichment_scores = FALSE,
border.size = 2,
border.color = "black",
pt.size = 2,
raster = FALSE,
raster.dpi = 1024,
plot_features = FALSE,
features = NULL,
use_viridis = TRUE,
viridis.palette = "G",
viridis.direction = 1,
sequential.palette = "YlGnBu",
sequential.direction = -1,
nbin = 24,
ctrl = 100,
number.breaks = 5,
plot.title.face = "bold",
plot.subtitle.face = "plain",
plot.caption.face = "italic",
axis.title.face = "bold",
axis.text.face = "plain",
legend.title.face = "bold",
legend.text.face = "plain"){
# Add lengthy error messages.
withr::local_options(.new = list("warning.length" = 8170))
check_suggests(function_name = "do_CellularStatesPlot")
# Check if the sample provided is a Seurat object.
check_Seurat(sample = sample)
# Check logical parameters.
logical_list <- list("axis.ticks" = axis.ticks,
"axis.text" = axis.text,
"verbose" = verbose,
"enforce_symmetry" = enforce_symmetry,
"plot_marginal_distributions" = plot_marginal_distributions,
"marginal.group" = marginal.group,
"legend.byrow" = legend.byrow,
"plot_cell_borders" = plot_cell_borders,
"raster" = raster,
"plot_features" = plot_features,
"plot_enrichment_scores" = plot_enrichment_scores,
"use_viridis" = use_viridis)
check_type(parameters = logical_list, required_type = "logical", test_function = is.logical)
# Check numeric parameters.
numeric_list <- list("font.size" = font.size,
"marginal.size" = marginal.size,
"legend.icon.size" = legend.icon.size,
"legend.ncol" = legend.ncol,
"legend.nrow" = legend.nrow,
"pt.size" = pt.size,
"border.size" = border.size,
"raster.dpi" = raster.dpi,
"viridis.direction" = viridis.direction,
"nbin" = nbin,
"ctrl" = ctrl,
"number.breaks" = number.breaks,
"sequential.direction" = sequential.direction)
check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric)
# Check character parameters.
character_list <- list("input_gene_list" = input_gene_list,
"x1" = x1,
"x2" = x2,
"y1" = y1,
"y2" = y2,
"group.by" = group.by,
"ylab" = ylab,
"xlab" = xlab,
"legend.position" = legend.position,
"plot.title" = plot.title,
"plot.subtitle" = plot.subtitle,
"plot.caption" = plot.caption,
"font.type" = font.type,
"marginal.type" = marginal.type,
"border.color" = border.color,
"features" = features,
"viridis.palette" = viridis.palette,
"sequential.palette" = sequential.palette,
"plot.title.face" = plot.title.face,
"plot.subtitle.face" = plot.subtitle.face,
"plot.caption.face" = plot.caption.face,
"axis.title.face" = axis.title.face,
"axis.text.face" = axis.text.face,
"legend.title.face" = legend.title.face,
"legend.text.face" = legend.text.face)
check_type(parameters = character_list, required_type = "character", test_function = is.character)
# Define pipe operator internally.
`%>%` <- magrittr::`%>%`
# Check the colors provided.
if (is.null(colors.use)){
colors.use <- {
if (is.null(group.by)){
generate_color_scale(levels(sample))
} else if (!(is.null(group.by))){
data.use <- sample[[]][, group.by, drop = FALSE]
names.use <- if (is.factor(data.use[, 1])){levels(data.use[, 1])} else {sort(unique(data.use[, 1]))}
generate_color_scale(names.use)
}
}
} else {
check_colors(colors.use, parameter_name = "colors.use")
if (is.null(group.by)){
colors.use <- check_consistency_colors_and_names(sample = sample, colors = colors.use)
} else {
colors.use <- check_consistency_colors_and_names(sample = sample, colors = colors.use, grouping_variable = group.by)
}
}
# Check border color.
check_colors(border.color, parameter_name = "border.color")
# Check group.by.
out <- check_group_by(sample = sample,
group.by = group.by,
is.heatmap = FALSE)
sample <- out[["sample"]]
group.by <- out[["group.by"]]
check_parameters(parameter = font.type, parameter_name = "font.type")
check_parameters(parameter = legend.position, parameter_name = "legend.position")
check_parameters(parameter = marginal.type, parameter_name = "marginal.type")
check_parameters(parameter = viridis.palette, parameter_name = "viridis.palette")
check_parameters(plot.title.face, parameter_name = "plot.title.face")
check_parameters(plot.subtitle.face, parameter_name = "plot.subtitle.face")
check_parameters(plot.caption.face, parameter_name = "plot.caption.face")
check_parameters(axis.title.face, parameter_name = "axis.title.face")
check_parameters(axis.text.face, parameter_name = "axis.text.face")
check_parameters(legend.title.face, parameter_name = "legend.title.face")
check_parameters(legend.text.face, parameter_name = "legend.text.face")
check_parameters(viridis.direction, parameter_name = "viridis.direction")
check_parameters(sequential.direction, parameter_name = "sequential.direction")
# Compute the enrichment scores.
sample <- compute_enrichment_scores(sample = sample, input_gene_list = input_gene_list, verbose = verbose, nbin = nbin, ctrl = ctrl)
# 2-variable plot.
if (is.null(y2) & is.null(x2)){
# Check that the names provided are not repeated.
assertthat::assert_that(sum(duplicated(c(x1, y1))) == 0,
msg = paste0(add_cross(), crayon_body("The "),
crayon_key("names"),
crayon_body(" of the lists can not be "),
crayon_key("duplicated"),
crayon_body(".")))
# Check that the names provided match the marker genes.
assertthat::assert_that(x1 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(x1),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
assertthat::assert_that(y1 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(y1),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
# Retrieve metadata variables.
variables_to_retrieve <- c(x1, y1, group.by)
# And store them as a tibble.
scores <- sample@meta.data[, variables_to_retrieve]
scores[["cell"]] <- rownames(scores)
# Shuffle the cells so that we accomplish a random plotting, not sample by sample.
scores <- scores[sample(scores[["cell"]], nrow(scores)), ]
scores <- tidyr::tibble(scores)
# Compute scores for the X axis.
x <- scores %>% dplyr::pull(x1)
# Compute scores for the Y axis.
y <- scores %>% dplyr::pull(y1)
names(x) <- scores[["cell"]]
names(y) <- scores[["cell"]]
# Define titles.
x_lab <- ifelse(is.null(xlab), x1, xlab)
y_lab <- ifelse(is.null(ylab), y1, ylab)
# Plot
df <- data.frame("set_x" = x, "set_y" = y, "group.by" = scores[[group.by]])
p <- ggplot2::ggplot(data = df,
mapping = ggplot2::aes(x = .data[["set_x"]],
y = .data[["set_y"]],
color = .data[["group.by"]]))
if (base::isFALSE(raster)){
p <- p +
ggplot2::geom_point(size = pt.size)
} else if (isTRUE(raster)){
p <- p +
scattermore::geom_scattermore(size = pt.size,
pointsize = pt.size,
pixels = c(raster.dpi, raster.dpi))
}
p <- p +
ggplot2::scale_color_manual(values = colors.use) +
ggplot2::guides(color = ggplot2::guide_legend(title = "")) +
ggplot2::xlab(x_lab) +
ggplot2::ylab(y_lab) +
ggplot2::labs(title = plot.title,
subtitle = plot.subtitle,
caption = plot.caption)
if (isTRUE(enforce_symmetry)){
# Define limits of polots.
lim1 <- min(min(x), min(y))
lim2 <- max(max(x), max(y))
lim_x <- c(lim1, lim2)
lim_y <- c(lim1, lim2)
p <- p +
ggplot2::coord_fixed(xlim = lim_x, ylim = lim_y)
}
# 3-variable plot.
} else if (is.null(y2) & !(is.null(x2))){
# Check that the names provided are not repeated.
assertthat::assert_that(sum(duplicated(c(x1, y1, x2))) == 0,
msg = paste0(add_cross(), crayon_body("The "),
crayon_key("names"),
crayon_body(" of the lists can not be "),
crayon_key("duplicated"),
crayon_body(".")))
# Check that the names provided match the marker genes.
assertthat::assert_that(x1 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(x1),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
assertthat::assert_that(x2 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(x1),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
assertthat::assert_that(y1 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(y1),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
# Retrieve metadata variables.
variables_to_retrieve <- c(x1, x2, y1, group.by)
# And store them as a tibble.
scores <- sample@meta.data[, variables_to_retrieve]
scores[["cell"]] <- rownames(scores)
# Shuffle the cells so that we accomplish a random plotting, not sample by sample.
scores <- tidyr::tibble(scores)
# Compute the scores for the X axis.
x <- vapply(seq_len(nrow(scores)), function(x) {
score_1 <- scores[x, x1] + stats::runif(1, min=0, max=0.15)
score_2 <- scores[x, x2] + stats::runif(1, min=0, max=0.15)
d <- max(score_1, score_2, na.rm = TRUE)
output <- ifelse(score_1 > score_2, d, -d)
return(output)
}, FUN.VALUE = numeric(1))
# Compute the scores for the Y axis.
y <- vapply(seq_len(nrow(scores)), function(x) {
score_1 <- scores[x, x1] + stats::runif(1, min=0, max=0.15)
score_2 <- scores[x, x2] + stats::runif(1, min=0, max=0.15)
d <- max(score_1, score_2, na.rm = TRUE)
output <- as.data.frame(scores)[x, y1] - d
return(output)
}, FUN.VALUE = numeric(1))
names(x) <- scores[["cell"]]
names(y) <- scores[["cell"]]
# Define titles.
x_lab <- ifelse(is.null(xlab), paste0(x2, " <----> ", x1), xlab)
y_lab <- ifelse(is.null(ylab), y1, ylab)
# Plot.
df <- data.frame("set_x" = x, "set_y" = y, "group.by" = scores[[group.by]])
p <- ggplot2::ggplot(df, mapping = ggplot2::aes(x = .data[["set_x"]],
y = .data[["set_y"]],
color = .data[["group.by"]]))
if (base::isFALSE(raster)){
p <- p +
ggplot2::geom_point(size = pt.size)
} else if (isTRUE(raster)){
p <- p +
scattermore::geom_scattermore(size = pt.size,
pointsize = pt.size,
pixels = c(raster.dpi, raster.dpi))
}
p <- p +
ggplot2::scale_color_manual(values = colors.use) +
ggplot2::xlab(x_lab) +
ggplot2::ylab(y_lab) +
ggplot2::guides(color = ggplot2::guide_legend(title = "")) +
ggplot2::labs(title = plot.title,
subtitle = plot.subtitle,
caption = plot.caption)
if (isTRUE(enforce_symmetry)){
# Define limits of polots.
lim <- max(abs(x))
lim_x <- c(-lim, lim)
lim <- max(abs(y))
lim_y <- c(-lim, lim)
p <- p +
ggplot2::xlim(lim_x) +
ggplot2::ylim(lim_y)
}
# 4-parameter plot.
} else if (!is.null(y2) & !(is.null(x2))){
# Check that the names provided are not repeated.
assertthat::assert_that(sum(duplicated(c(x1, y1, x2, y2))) == 0,
msg = paste0(add_cross(), crayon_body("The "),
crayon_key("names"),
crayon_body(" of the lists can not be "),
crayon_key("duplicated"),
crayon_body(".")))
# Check that the names provided match the marker genes.
assertthat::assert_that(x1 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(x1),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
assertthat::assert_that(x2 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(x2),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
assertthat::assert_that(y1 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(y1),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
assertthat::assert_that(y2 %in% names(input_gene_list),
msg = paste0(add_cross(), crayon_body("The name "),
crayon_key(y2),
crayon_body(" is not a name of the lists of genes provided to "),
crayon_key("input_gene_list"),
crayon_body(".")))
# Retrieve metadata variables to plot.
variables_to_retrieve <- c(x1, x2, y1, y2)
# And store them as a tibble.
scores <- sample@meta.data[, variables_to_retrieve]
# Shuffle the cells so that we accomplish a random plotting, not sample by sample.
# Compute Y axis values.
d <- apply(scores, 1, function(x){max(x[c(x1, x2)]) - max(x[c(y1, y2)])})
# Compute X axis values.
x <- vapply(seq_along(d), function(x) {
if (d[x] > 0) {
d <- log2(abs(scores[x, x1] - scores[x, x2]) + 1)
ifelse(scores[x, x1] < scores[x, x2], d, -d)
} else {
d <- log2(abs(scores[x, y1] - scores[x, y2]) + 1)
ifelse(scores[x, y1] < scores[x, y2], d, -d)
}
}, FUN.VALUE = numeric(1))
names(x) <- rownames(scores)
# Define titles for the axis.
x_lab1 <- paste0(y1, " <----> ", y2)
x_lab2 <- paste0(x1, " <----> ", x2)
y_lab1 <- paste0(y1, " <----> ", x1)
y_lab2 <- paste0(x2, " <----> ", y2)
# Plot.
df <- data.frame(row.names = rownames(scores))
df[["set_x"]] <- x
df[["set_y"]] <- d
df[["group.by"]] <- sample@meta.data[, group.by]
p <- ggplot2::ggplot(df, mapping = ggplot2::aes(x = .data[["set_x"]],
y = .data[["set_y"]],
color = .data[["group.by"]]))
if (base::isFALSE(raster)){
p <- p +
ggplot2::geom_point(size = pt.size)
} else if (isTRUE(raster)){
p <- p +
scattermore::geom_scattermore(size = pt.size,
pointsize = pt.size,
pixels = c(raster.dpi, raster.dpi))
}
p <- p +
ggplot2::scale_color_manual(values = colors.use) +
ggplot2::xlab(x_lab1) +
ggplot2::ylab(y_lab1) +
ggplot2::labs(title = plot.title,
subtitle = plot.subtitle,
caption = plot.caption)
suppressMessages({
p <- p +
ggplot2::scale_y_continuous(sec.axis = ggplot2::sec_axis(~., name = y_lab2)) +
ggplot2::scale_x_continuous(sec.axis = ggplot2::sec_axis(~., name = x_lab2))
})
if (isTRUE(enforce_symmetry)){
# Define limits of polots.
lim_1 <- min(min(d), min(x))
lim_2 <- max(max(d), max(x))
value <- max(abs(c(lim_1, lim_2)))
lim <- c(-value, value)
suppressMessages({
p <- p +
ggplot2::xlim(lim) +
ggplot2::ylim(lim) +
ggplot2::scale_y_continuous(sec.axis = ggplot2::sec_axis(~., name = y_lab2)) +
ggplot2::scale_x_continuous(sec.axis = ggplot2::sec_axis(~., name = x_lab2)) +
ggplot2::coord_fixed(xlim = c(-value, value), ylim = c(-value, value))
})
}
}
# Overall formatting for the plot.
p <- p &
ggplot2::theme_minimal(base_size = font.size) &
ggplot2::theme(axis.title = ggplot2::element_text(face = axis.title.face),
axis.line.y.right = ggplot2::element_line(color = "black"),
axis.ticks.y.right = ggplot2::element_line(color = "black"),
axis.line.x.top = ggplot2::element_line(color = "black"),
axis.ticks.x.top = ggplot2::element_line(color = "black"),
axis.text.x.top = ggplot2::element_text(face = axis.text.face, color = "black"),
axis.text.y.right = ggplot2::element_text(face = axis.text.face, color = "black"),
axis.title.x.top = ggplot2::element_text(face = axis.title.face, color = "black"),
axis.title.y.right = ggplot2::element_text(face = axis.title.face, color = "black"),
axis.text = ggplot2::element_text(face = "bold", color = "black"),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
text = ggplot2::element_text(family = font.type),
plot.caption.position = "plot",
legend.text = ggplot2::element_text(face = legend.text.face),
legend.position = legend.position,
legend.title = ggplot2::element_text(face = legend.title.face),
legend.justification = "center",
plot.margin = ggplot2::margin(t = 10, r = 10, b = 10, l = 10),
axis.ticks = ggplot2::element_line(color = "black"),
axis.line = ggplot2::element_line(color = "black"),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white")) &
ggplot2::guides(color = ggplot2::guide_legend(title = "",
ncol = legend.ncol,
nrow = legend.nrow,
byrow = legend.byrow,
override.aes = list(size = legend.icon.size)))
# Add cell borders.
if (isTRUE(plot_cell_borders)){
if (base::isFALSE(raster)){
base_layer <- ggplot2::geom_point(data = df,
mapping = ggplot2::aes(x = .data[["set_x"]],
y = .data[["set_y"]]),
size = pt.size * border.size,
color = border.color,
show.legend = FALSE)
} else if (isTRUE(raster)){
base_layer <- scattermore::geom_scattermore(data = df,
mapping = ggplot2::aes(x = .data[["set_x"]],
y = .data[["set_y"]]),
size = pt.size * border.size,
stroke = pt.size / 2,
color = border.color,
pointsize = pt.size * border.size,
pixels = c(raster.dpi, raster.dpi),
show.legend = FALSE)
}
p[["layers"]] <- append(base_layer, p[["layers"]])
}
if (isTRUE(plot_features) | isTRUE(plot_enrichment_scores)){
if (isTRUE(plot_features)){
assertthat::assert_that(!is.null(features),
msg = paste0(add_cross(), crayon_body("Please provide a value to "),
crayon_key("features"),
crayon_body(" .")))
}
output_list <- list()
# Generate a mock DimRed object for the plots.
df.use <- df[, c("set_x", "set_y")]
colnames(df.use) <- c("DIM_1", "DIM_2")
sample@reductions[["test"]] <- Seurat::CreateDimReducObject(embeddings = as.matrix(df.use), assay = "SCT")
if (isTRUE(plot_features) & isTRUE(plot_enrichment_scores)){
features <- c(features, names(input_gene_list))
} else if (base::isFALSE(plot_features) & isTRUE(plot_enrichment_scores)){
features <- names(input_gene_list)
}
for (feature in features){
p.feature <- do_FeaturePlot(sample = sample,
features = feature,
reduction = "test",
plot_cell_borders = plot_cell_borders,
pt.size = pt.size,
legend.position = legend.position,
border.size = border.size,
border.color = border.color,
raster = raster,
raster.dpi = raster.dpi,
font.type = font.type,
font.size = font.size,
viridis.palette = viridis.palette,
viridis.direction = viridis.direction,
number.breaks = number.breaks,
use_viridis = use_viridis,
sequential.palette = sequential.palette,
sequential.direction = sequential.direction)
# Add back the missing aesthetics.
if (is.null(y2) & is.null(x2)){
# Define titles.
p.feature <- p.feature +
ggplot2::xlab(x_lab) +
ggplot2::ylab(y_lab)
if (isTRUE(enforce_symmetry)){
suppressMessages({
p.feature <- p.feature +
ggplot2::coord_fixed(xlim = lim_x, ylim = lim_y)
})
}
} else if (is.null(y2) & !(is.null(x2))){
# Define titles.
p.feature <- p.feature +
ggplot2::xlab(x_lab) +
ggplot2::ylab(y_lab)
if (isTRUE(enforce_symmetry)){
suppressMessages({
p.feature <- p.feature +
ggplot2::xlim(lim_x) +
ggplot2::ylim(lim_y)
})
}
} else if (!is.null(y2) & !(is.null(x2))){
p.feature <- p.feature +
ggplot2::xlab(x_lab1) +
ggplot2::ylab(y_lab1)
if (isTRUE(enforce_symmetry)){
suppressMessages({
p.feature <- p.feature +
ggplot2::xlim(lim) +
ggplot2::ylim(lim) +
ggplot2::scale_y_continuous(sec.axis = ggplot2::sec_axis(~., name = y_lab2)) +
ggplot2::scale_x_continuous(sec.axis = ggplot2::sec_axis(~., name = x_lab2)) +
ggplot2::coord_fixed(xlim = c(-value, value), ylim = c(-value, value))
})
}
}
p.feature <- p.feature +
ggplot2::theme_minimal(base_size = font.size) &
ggplot2::theme(axis.title = ggplot2::element_text(face = axis.title.face),
axis.text = ggplot2::element_text(face = axis.text.face, color = "black"),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
text = ggplot2::element_text(family = font.type),
plot.caption.position = "plot",
legend.text = ggplot2::element_text(face = legend.text.face),
legend.position = legend.position,
legend.title = ggplot2::element_text(face = legend.title.face),
legend.justification = "center",
plot.margin = ggplot2::margin(t = 10, r = 10, b = 10, l = 10),
axis.ticks = ggplot2::element_line(color = "black"),
axis.line = ggplot2::element_line(color = "black"),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"))
output_list[[feature]] <- p.feature
}
}
if (isTRUE(plot_marginal_distributions)){
# Remove annoying warnings when violin is used as marginal distribution.
if (marginal.type == "violin"){
p <- suppressWarnings({ggExtra::ggMarginal(p = p,
groupColour = ifelse(isTRUE(marginal.group), TRUE, FALSE),
groupFill = ifelse(isTRUE(marginal.group), TRUE, FALSE),
type = marginal.type,
size = marginal.size)})
} else {
p <- ggExtra::ggMarginal(p = p,
groupColour = ifelse(isTRUE(marginal.group), TRUE, FALSE),
groupFill = ifelse(isTRUE(marginal.group), TRUE, FALSE),
type = marginal.type,
size = marginal.size)
}
# Transform back to ggplot2 object.
p <- ggplotify::as.ggplot(p)
# Fix for the plot backgrounds after applying ggMarginal.
p[["theme"]][["plot.background"]] <- ggplot2::element_rect(fill = "white", color = "white")
p[["theme"]][["legend.background"]] <- ggplot2::element_rect(fill = "white", color = "white")
p[["theme"]][["panel.background"]] <- ggplot2::element_rect(fill = "white", color = "white")
}
# Remove axis ticks?
if (axis.ticks == FALSE){
p <- p +
ggplot2::theme(axis.ticks = ggplot2::element_blank())
}
# Remove axis text?
if (axis.text == FALSE){
p <- p +
ggplot2::theme(axis.text = ggplot2::element_blank())
}
if (isTRUE(plot_features) | isTRUE(plot_enrichment_scores)){
output_list[["main"]] <- p
return_object <- output_list
} else if (base::isFALSE(plot_features) & base::isFALSE(plot_enrichment_scores)){
return_object <- p
}
return(return_object)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.