Nothing
#' BeeSwarm plot.
#'
#' @inheritParams doc_function
#' @param feature_to_rank \strong{\code{\link[base]{character}}} | Feature for which the cells are going to be ranked. Ideal case is that this feature is stored as a metadata column.
#' @param continuous_feature \strong{\code{\link[base]{logical}}} | Is the feature to rank and color for continuous? I.e: an enrichment score.
#' @param order \strong{\code{\link[base]{logical}}} | Whether to reorder the groups based on the median of the ranking.
#' @param remove_x_axis,remove_y_axis \strong{\code{\link[base]{logical}}} | Remove X axis labels and ticks from the plot.
#' @return A ggplot2 object containing a Bee Swarm plot.
#' @export
#'
#' @example /man/examples/examples_do_BeeSwarmPlot.R
do_BeeSwarmPlot <- function(sample,
feature_to_rank,
group.by = NULL,
assay = NULL,
reduction = NULL,
slot = NULL,
continuous_feature = FALSE,
order = FALSE,
colors.use = NULL,
legend.title = NULL,
legend.type = "colorbar",
legend.position = "bottom",
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.length = 20,
legend.width = 1,
legend.framecolor = "grey50",
legend.tickcolor = "white",
legend.ncol = NULL,
legend.icon.size = 4,
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
xlab = NULL,
ylab = NULL,
font.size = 14,
font.type = "sans",
remove_x_axis = FALSE,
remove_y_axis = FALSE,
flip = FALSE,
use_viridis = FALSE,
viridis.palette = "G",
viridis.direction = 1,
sequential.palette = "YlGnBu",
sequential.direction = 1,
verbose = TRUE,
raster = FALSE,
raster.dpi = 300,
plot_cell_borders = TRUE,
border.size = 1.5,
border.color = "black",
pt.size = 2,
min.cutoff = NA,
max.cutoff = NA,
na.value = "grey75",
number.breaks = 5,
plot.title.face = "bold",
plot.subtitle.face = "plain",
plot.caption.face = "italic",
axis.title.face = "bold",
axis.text.face = "plain",
legend.title.face = "bold",
legend.text.face = "plain"){
# Add lengthy error messages.
withr::local_options(.new = list("warning.length" = 8170))
check_suggests(function_name = "do_BeeSwarmPlot")
`%>%` <- magrittr::`%>%`
# Check ggbeeswarm version:
# nocov start
if(utils::packageVersion("ggbeeswarm") < "0.7.1"){
warning(paste0(add_warning(), crayon_body("Due to recent updates in ggbeeswarm package, some internal interaction with ggplot2 have changed. Please update ggbeeswarm and ggplot2 to ensure correct plotting."), call. = FALSE))
}
# nocov end
# Check if the sample provided is a Seurat object.
check_Seurat(sample = sample)
# Check the assay.
out <- check_and_set_assay(sample, assay = assay)
sample <- out[["sample"]]
assay <- out[["assay"]]
# Check the reduction.
reduction <- check_and_set_reduction(sample = sample, reduction = reduction)
# Check logical parameters.
logical_list <- list("continuous_feature" = continuous_feature,
"remove_x_axis" = remove_x_axis,
"remove_y_axis" = remove_y_axis,
"flip" = flip,
"verbose" = verbose,
"raster" = raster,
"plot_cell_borders" = plot_cell_borders,
"use_viridis" = use_viridis,
"order" = order)
check_type(parameters = logical_list, required_type = "logical", test_function = is.logical)
# Check numeric parameters.
numeric_list <- list("font.size" = font.size,
"raster.dpi" = raster.dpi,
"legend.framewidth" = legend.framewidth,
"legend.tickwidth" = legend.tickwidth,
"legend.length" = legend.length,
"legend.width" = legend.width,
"pt.size" = pt.size,
"border.size" = border.size,
"min.cutoff" = min.cutoff,
"max.cutoff" = max.cutoff,
"viridis.direction" = viridis.direction,
"legend.ncol" = legend.ncol,
"legend.icon.size" = legend.icon.size,
"number.breaks" = number.breaks,
"sequential.direction" = sequential.direction)
check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric)
# Check character parameters.
character_list <- list("legend.position" = legend.position,
"legend.title" = legend.title,
"plot.title" = plot.title,
"plot.subtitle" = plot.subtitle,
"plot.caption" = plot.caption,
"feature_to_rank" = feature_to_rank,
"group.by" = group.by,
"ylab" = ylab,
"xlab" = xlab,
"slot" = slot,
"viridis.palette" = viridis.palette,
"legend.framecolor" = legend.framecolor,
"legend.tickcolor" = legend.tickcolor,
"legend.type" = legend.type,
"font.type" = font.type,
"border.color" = border.color,
"sequential.palette" = sequential.palette,
"plot.title.face" = plot.title.face,
"plot.subtitle.face" = plot.subtitle.face,
"plot.caption.face" = plot.caption.face,
"axis.title.face" = axis.title.face,
"axis.text.face" = axis.text.face,
"legend.title.face" = legend.title.face,
"legend.text.face" = legend.text.face,
"na.value" = na.value)
check_type(parameters = character_list, required_type = "character", test_function = is.character)
# Check slot.
slot <- check_and_set_slot(slot = slot)
# Check the colors provided to legend.framecolor and legend.tickcolor and border color.
check_colors(legend.framecolor, parameter_name = "legend.framecolor")
check_colors(legend.tickcolor, parameter_name = "legend.tickcolor")
check_colors(border.color, parameter_name = "border.color")
check_colors(na.value, parameter_name = "na.value")
check_parameters(parameter = font.type, parameter_name = "font.type")
check_parameters(parameter = number.breaks, parameter_name = "number.breaks")
check_parameters(parameter = legend.type, parameter_name = "legend.type")
check_parameters(parameter = legend.position, parameter_name = "legend.position")
check_parameters(parameter = viridis.palette, parameter_name = "viridis.palette")
check_parameters(parameter = sequential.palette, parameter_name = "sequential.palette")
check_parameters(plot.title.face, parameter_name = "plot.title.face")
check_parameters(plot.subtitle.face, parameter_name = "plot.subtitle.face")
check_parameters(plot.caption.face, parameter_name = "plot.caption.face")
check_parameters(axis.title.face, parameter_name = "axis.title.face")
check_parameters(axis.text.face, parameter_name = "axis.text.face")
check_parameters(legend.title.face, parameter_name = "legend.title.face")
check_parameters(legend.text.face, parameter_name = "legend.text.face")
check_parameters(viridis.direction, parameter_name = "viridis.direction")
check_parameters(sequential.direction, parameter_name = "sequential.direction")
assertthat::assert_that(length(feature_to_rank) == 1,
msg = paste0(crayon_body("Please provide only "),
crayon_key("one feature"),
crayon_body(" to "),
crayon_key("feature_to_rank"),
crayon_body(".")))
colors.gradient <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette, sequential.palette),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = FALSE)
# Check group.by.
out <- check_group_by(sample = sample,
group.by = group.by,
is.heatmap = FALSE)
sample <- out[["sample"]]
group.by <- out[["group.by"]]
# Assign legend title.
if (is.null(legend.title)){
legend.title <- if (isTRUE(continuous_feature)) {feature_to_rank} else {group.by}
}
dim_colnames <- check_feature(sample = sample, features = feature_to_rank, dump_reduction_names = TRUE)
if (feature_to_rank %in% colnames(sample@meta.data)) {
sample@meta.data$rank_me <- sample@meta.data[, feature_to_rank]
sample@meta.data$rank <- rank(sample@meta.data$rank_me)
} else if (feature_to_rank %in% rownames(sample)){
suppressWarnings({
sample@meta.data$rank_me <- SeuratObject::GetAssayData(object = sample, slot = slot, assay = assay)[feature_to_rank, ]
})
sample@meta.data$rank <- rank(sample@meta.data$rank_me)
} else if (feature_to_rank %in% dim_colnames){
for(red in Seurat::Reductions(object = sample)){
if (feature_to_rank %in% colnames(sample@reductions[[red]][[]])){
reduction <- red
sample@meta.data$rank_me <- sample@reductions[[reduction]][[]][, feature_to_rank]
sample@meta.data$rank <- rank(sample@meta.data$rank_me)
}
}
}
# Compute the ranking
sample@meta.data$ranked_groups <- factor(sample@meta.data[, group.by], levels = sort(unique(sample@meta.data[, group.by])))
if (isTRUE(order)){
# Get median rank by group.
order <- sample@meta.data %>%
dplyr::select(dplyr::all_of(c("ranked_groups", "rank"))) %>%
dplyr::group_by(.data$ranked_groups) %>%
dplyr::summarise("median" = stats::median(.data$rank, na.rm = TRUE)) %>%
dplyr::arrange(dplyr::desc(.data$median)) %>%
dplyr::pull(.data$ranked_groups) %>%
as.character()
sample@meta.data$ranked_groups <- factor(sample@meta.data$ranked_groups, levels = rev(order))
}
color_by <- ifelse(continuous_feature == TRUE, "rank_me", "ranked_groups")
# Compute the limits.
if (isTRUE(continuous_feature)){
data <- sample$rank_me
range.data <- c(min(data, na.rm = TRUE),
max(data, na.rm = TRUE))
scale.setup <- compute_scales(sample = NULL,
feature = feature_to_rank,
assay = NULL,
reduction = NULL,
slot = NULL,
number.breaks = number.breaks,
min.cutoff = min.cutoff,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = FALSE,
from_data = TRUE,
limits.use = range.data)
sample$rank_me[sample$rank_me < min.cutoff] <- min.cutoff
sample$rank_me[sample$rank_me > max.cutoff] <- max.cutoff
}
p <- ggplot2::ggplot(sample@meta.data,
mapping = ggplot2::aes(x = .data[["rank"]],
y = .data[["ranked_groups"]],
color = !!rlang::sym(color_by)))
# Add raster layer if desired.
if (isTRUE(raster)){
p <- p +
ggrastr::geom_quasirandom_rast(raster.dpi = raster.dpi,
size = pt.size)
} else {
p <- p +
ggbeeswarm::geom_quasirandom(size = pt.size)
}
p <- p +
ggplot2::labs(title = plot.title,
subtitle = plot.subtitle,
caption = plot.caption) +
ggplot2::theme_minimal(base_size = font.size) +
ggplot2::theme(plot.margin = ggplot2::margin(t = 10, r = 10, b = 10, l = 10),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
panel.grid = ggplot2::element_blank(),
plot.title.position = "plot",
plot.caption.position = "plot",
text = ggplot2::element_text(family = font.type),
legend.text = ggplot2::element_text(face = legend.text.face),
legend.position = legend.position,
legend.title = ggplot2::element_text(face = legend.title.face),
legend.justification = "center",
axis.title.x = ggplot2::element_text(face = axis.title.face),
axis.title.y = ggplot2::element_text(face = axis.title.face, angle = 90),
axis.ticks.y = if(base::isFALSE(flip)){ggplot2::element_line(color = "black")} else {ggplot2::element_blank()},
axis.ticks.x = if(isTRUE(flip)){ggplot2::element_line(color = "black")} else {ggplot2::element_blank()},
axis.text = ggplot2::element_text(face = axis.text.face, color = "black"),
axis.line = ggplot2::element_line(color = "black"),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"))
if (continuous_feature == TRUE){
p <- p +
ggplot2::scale_color_gradientn(colors = colors.gradient,
na.value = na.value,
name = legend.title,
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
p <- modify_continuous_legend(p = p,
legend.title = legend.title,
legend.aes = "color",
legend.type = legend.type,
legend.position = legend.position,
legend.length = legend.length,
legend.width = legend.width,
legend.framecolor = legend.framecolor,
legend.tickcolor = legend.tickcolor,
legend.framewidth = legend.framewidth,
legend.tickwidth = legend.tickwidth)
} else if (continuous_feature == FALSE) {
if (is.null(colors.use)){
colors.use <- generate_color_scale(levels(sample))
} else {
colors.use <- check_consistency_colors_and_names(sample = sample, colors = colors.use, grouping_variable = group.by)
}
# Adapt the legend to categorical variables.
if (is.null(legend.title)){
legend.title <- "Groups"
}
p <- p +
ggplot2::scale_color_manual(values = colors.use) +
ggplot2::guides(color = ggplot2::guide_legend(title = legend.title,
title.position = "top",
title.hjust = 0.5,
ncol = legend.ncol,
override.aes = list(size = legend.icon.size))) +
ggplot2::theme(legend.position = legend.position)
}
if (remove_x_axis == TRUE){
p <- p +
ggplot2::theme(axis.text.x = ggplot2::element_blank(),
axis.ticks.x = ggplot2::element_blank())
}
if (remove_y_axis == TRUE){
p <- p +
ggplot2::theme(axis.text.y = ggplot2::element_blank(),
axis.ticks.y = ggplot2::element_blank())
}
if (flip == TRUE){
p <- p +
ggplot2::coord_flip() +
ggplot2::theme(axis.text.y = ggplot2::element_blank(),
axis.ticks.y = ggplot2::element_blank()) +
ggplot2::xlab(ifelse(is.null(ylab), paste0("Ranking of ", feature_to_rank), ylab)) +
ggplot2::ylab(if(is.null(xlab)) {group.by} else {xlab})
} else {
p <- p +
ggplot2::theme(axis.text.x = ggplot2::element_blank(),
axis.ticks.x = ggplot2::element_blank()) +
ggplot2::xlab(ifelse(is.null(xlab), paste0("Ranking of ", feature_to_rank), xlab)) +
ggplot2::ylab(if(is.null(ylab)) {group.by} else {ylab})
}
if (isTRUE(plot_cell_borders)){
# Generate base layer.
if (isTRUE(raster)){
base_layer <- ggrastr::geom_quasirandom_rast(data = sample@meta.data,
mapping = ggplot2::aes(x = .data[["rank"]],
y = .data[["ranked_groups"]]),
raster.dpi = raster.dpi,
color = border.color,
size = pt.size * border.size,
show.legend = FALSE)
} else if (base::isFALSE(raster)){
base_layer <-ggbeeswarm::geom_quasirandom(data = sample@meta.data,
mapping = ggplot2::aes(x = .data[["rank"]],
y = .data[["ranked_groups"]]),
color = border.color,
size = pt.size * border.size,
show.legend = FALSE)
}
p[["layers"]] <- append(base_layer, p[["layers"]])
}
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.