Nothing
#' import.msfinder.formulas
#'
#' After running MSFinder on .mat or .msp files, import the formulas that were predicted and their scores
#' @param ramclustObj R object - the ramclustR object which was used to write the .mat or .msp files
#' @param mat.dir optional path to .mat directory
#' @param msp.dir optional path to .msp directory
#' @details this function imports the output from the MSFinder program to support annotation of the ramclustR object
#' @return new slot at $msfinder.formula.details
#' @references Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem. 2014 Jul 15;86(14):6812-7. doi: 10.1021/ac501530d. Epub 2014 Jun 26. PubMed PMID: 24927477.
#' @references Broeckling CD, Ganna A, Layer M, Brown K, Sutton B, Ingelsson E, Peers G, Prenni JE. Enabling Efficient and Confident Annotation of LC-MS Metabolomics Data through MS1 Spectrum and Time Prediction. Anal Chem. 2016 Sep 20;88(18):9226-34. doi: 10.1021/acs.analchem.6b02479. Epub 2016 Sep 8. PubMed PMID: 7560453.
#' @references Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal Chem. 2016 Aug 16;88(16):7946-58. doi: 10.1021/acs.analchem.6b00770. Epub 2016 Aug 4. PubMed PMID: 27419259.
#' @concept ramclustR
#' @concept RAMClustR
#' @concept metabolomics
#' @concept mass spectrometry
#' @concept clustering
#' @concept feature
#' @concept MSFinder
#' @concept xcms
#' @author Corey Broeckling
#' @export
import.msfinder.formulas <- function (ramclustObj = NULL,
mat.dir = NULL,
msp.dir = NULL)
{
if(is.null(ramclustObj)) {
stop("must supply ramclustObj as input. i.e. ramclustObj = RC", '\n')
}
home.dir <- getwd()
r <- grep("msfinder.formula", names(ramclustObj))
if (length(r) > 0) {
warning("removed previously assigned MSFinder formulas and structures",
"\n")
ramclustObj <- ramclustObj[-r]
r <- grep("msfinder.structure", names(ramclustObj))
if(length(r)>0) {
ramclustObj <- ramclustObj[-r]
}
rm(r)
}
if (is.null(mat.dir)) {
mat.dir = paste0(getwd(), "/spectra/mat")
}
if (is.null(msp.dir)) {
msp.dir = paste0(getwd(), "/spectra/msp")
}
usemat = TRUE
usemsp = TRUE
if (!dir.exists(mat.dir)) {
usemat = FALSE
}
if (!dir.exists(msp.dir)) {
usemsp = FALSE
}
if (!usemsp & !usemat) {
stop("neither of these two directories exist: ", "\n",
" ", mat.dir, "\n", " ", msp.dir, "\n")
}
if (usemsp & usemat) {
msps <- list.files(msp.dir, recursive = TRUE)
mats <- list.files(mat.dir, recursive = TRUE)
if (length(mats) > length(msps)) {
usemsp <- FALSE
}
if (length(msps) > length(mats)) {
usemat <- FALSE
}
if (length(msps) == length(mats)) {
feedback <- readline(prompt = "Press 1 for .mat or 2 for .msp to continue")
if (feedback == 1) {
usemsp <- FALSE
}
if (feedback == 2) {
usemat <- FALSE
}
}
}
mat.dir <- c(mat.dir, msp.dir)[c(usemat, usemsp)]
do <- list.files(mat.dir, pattern = ".fgt", full.names = TRUE)
### retrieve parameter file from mat directory and parse to save with results.
params <- list.files(mat.dir, pattern = "batchparam", full.names = TRUE)
if(length(params) == 0) {
params <- list.files(mat.dir, pattern = "MSFINDER.INI", full.names = TRUE)
}
if(length(params) > 0) {
mtime <- rep(NA, length(params))
for(i in 1:length(mtime)) {
mtime[i] <- format(file.info(params[i])$mtime, format = '%y%m%d%H%M%S')
}
params <- params[which.max(mtime)]
params <- readLines(params)
breaks <- which(nchar(params)==0)
## formula inference parameters
st <- grep ("Formula finder parameters", params)+1
end <- breaks[which(breaks > st)[1]]-1
if(end <= st) {stop('parsing of parameter file has failed')}
tmp <- strsplit(params[st:end], "=")
nms <- sapply(1:length(tmp), FUN = function(x) {tmp[[x]][1]})
vals <- sapply(1:length(tmp), FUN = function(x) {tmp[[x]][2]})
names(vals) <- nms
ramclustObj$msfinder.formula.parameters <- vals
## DB used record
st <- grep ("Data source", params)+1
end <- breaks[which(breaks > st)[1]]-1
if(end <= st) {stop('parsing of parameter file has failed')}
tmp <- strsplit(params[st:end], "=")
nms <- sapply(1:length(tmp), FUN = function(x) {tmp[[x]][1]})
vals <- sapply(1:length(tmp), FUN = function(x) {tmp[[x]][2]})
names(vals) <- nms
if(grepl("F", vals["IsUserDefinedDB"])) {
vals <- vals[1:(length(vals)-1)]
nms <- nms[1:(length(nms)-1)]
}
vals <- as.logical(vals)
names(vals) <- nms
vals <- names(which(vals))
vals <- vals[!grepl("NeverUse", vals)]
vals <- gsub("OnlyUseForNecessary", "", vals)
vals <- gsub("Allways", "", vals)
vals <- unique(vals)
ramclustObj$msfinder.dbs <- vals
}
cmpd <- gsub(".fgt", "", basename(do))
specres <- 0
allres <- 0
for(i in 1:min(10,length(do))) {
tmp <- readLines(do[[i]])
allres <- allres + length(which(grepl("NAME:", tmp, ignore.case = TRUE)))
specres <- specres + length(which(grepl("NAME: Spectral DB search", tmp, ignore.case = TRUE)))
rm(tmp)
}
if (specres == allres) {
stop("these MSFinder contain only spectral search results; please use 'import.MSFinder.search' function instead",
"\n")
}
tags <- c("NAME: ", "EXACTMASS: ", "ISSELECTED: ", "MASSDIFFERENCE: ",
"TOTALSCORE: ", "ISOTOPICINTENSITY[M+1]: ", "ISOTOPICINTENSITY[M+2]: ",
"ISOTOPICDIFF[M+1]: ", "ISOTOPICDIFF[M+2]: ", "MASSDIFFSCORE: ",
"ISOTOPICSCORE: ", "PRODUCTIONSCORE: ", "NEUTRALLOSSSCORE: ",
"PRODUCTIONPEAKNUMBER: ", "PRODUCTIONHITSNUMBER: ",
"NEUTRALLOSSPEAKNUMBER: ", "NEUTRALLOSSHITSNUMBER: ",
"RESOURCENAMES: ", "RESOURCERECORDS: ", "ChemOntDescriptions: ",
"ChemOntIDs: ", "ChemOntScores: ", "ChemOntInChIKeys: ",
"PUBCHEMCIDS: ")
names(tags) <- tolower(gsub(": ", "", tags))
fill <- matrix(nrow = 0, ncol = length(tags))
dimnames(fill)[[2]] <- names(tags)
fill <- data.frame(fill, check.names = FALSE, stringsAsFactors = FALSE)
msfinder.formula <- as.list(rep(NA, length(ramclustObj$cmpd)))
names(msfinder.formula) <- ramclustObj$cmpd
for (i in 1:length(do)) {
tmp <- readLines(do[[i]])
starts <- grep("NAME: ", tmp)
if (length(starts) < 1) {
msfinder.formula[[cmpd[i]]] <- fill
next
}
if (length(starts) > 1) {
stops <- c(((starts[2:length(starts)]) - 1), (length(tmp) -
1))
}
else {
stops <- length(tmp) - 1
}
out <- matrix(nrow = length(starts), ncol = length(tags))
dimnames(out)[[2]] <- names(tags)
for (j in 1:length(starts)) {
d <- tmp[starts[j]:stops[j]]
vals <- sapply(1:length(tags), FUN = function(x) {
m <- grep(tags[x], d, fixed = TRUE)
if (length(m) == 0) {
NA
}
else {
if (length(m) > 1) {
m <- m[1]
}
gsub(tags[x], "", d[m])
}
})
out[j, ] <- vals
}
out <- data.frame(out, check.names = FALSE, stringsAsFactors = FALSE)
if (any(out[, "name"] == "Spectral DB search")) {
out <- out[-grep("Spectral DB search", out[, "name"]),
, drop = FALSE]
}
if (nrow(out) == 0) {
msfinder.formula[[cmpd[i]]] <- fill
}
else {
msfinder.formula[[cmpd[i]]] <- out
}
}
missing <- which(is.na(msfinder.formula))
if(length(missing > 0)) {
for(x in missing) {
msfinder.formula[[x]] <- fill
}
}
ramclustObj$msfinder.formula.details <- msfinder.formula
setwd(home.dir)
if(is.null(ramclustObj$history)) {
ramclustObj$history <- ""
}
ramclustObj$history$msfinder <- paste(
"MSFinder (Tsugawa 2016) was used for spectral matching,",
"formula inference, and tentative structure assignment,",
"and results were imported into the RAMClustR object.")
if(is.null(ramclustObj$msfinder.dbs)) {
dbs <- sapply(1:length(ramclustObj$ann),
FUN = function(x) {
tmp <- paste(ramclustObj$msfinder.formula.details[[x]]$resourcenames, collapse = ",")
tmp <- strsplit(tmp, ",", fixed = TRUE)
tmp <- tmp[which(nchar(tmp)>0)]
return(tmp)
}
)
dbs <- unique(unlist(dbs))
dbs <- dbs[which(nchar(dbs)>0)]
ramclustObj$msfinder.dbs <- dbs
}
return(ramclustObj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.