Nothing
#' cvCalcBulkProfile Function
#'
#' This function allows to calculate Intra-donor variations in bulk data over
#' longitudinal timepoints and visualize in a CV vs Mean plot. Plots stored in
#' output directory.
#' @param data_object Input \emph{PALMO} S4 object. It contains annotation
#' information and expression data from Bulk or single cell data.
#' @param fileName User-defined filename, Default outputFile
#' @param filePATH User-defined output directory \emph{PATH} Default, current
#' directory
#' @param cl Number of clusters. Use nCores-1 to run parallel. Default 2
#' @return PALMO object with CV profile cv_all
#' @keywords cvCalcBulkProfile
#' @export
#' @examples
#' \dontrun{
#' cvCalcBulkProfile(data_object=palmo_obj)
#' }
cvCalcBulkProfile <- function(data_object, cl = 2, fileName = NULL,
filePATH = NULL) {
message(date(), ": Performing Coefficient of variance analysis.")
if (is.null(fileName)) {
fileName <- "outputFile"
}
if (is.null(filePATH)) {
filePATH <- data_object@filePATH
}
## get the data
ann <- data_object@curated$anndata
mat <- data_object@curated$data
check_data <- all.equal(row.names(ann), colnames(mat))
if (check_data == FALSE) {
stop(date(), ": Annotation of samples (rows) and datamatrix columns do
not match")
}
# CV vs Mean
unigene <- row.names(mat)
uniSample <- sort(unique(ann$PTID))
message(date(), ": Performing CV calculations")
op <- pboptions(type = "timer") # default
res <- pblapply(uniSample, cl = cl, function(uS) {
# print(uS)
meta_df <- ann[ann$PTID %in% uS, ]
if (nrow(meta_df) > 1) {
df <- mat[unigene, meta_df$Sample]
df <- data.frame(df,
NAs = apply(df, 1, function(x) { sum(is.na(x)) }),
zeros = apply(df, 1, function(x) { sum(x == 0) }),
mean = rowMeans(df, na.rm = TRUE),
sd = apply(df, 1, sd, na.rm = TRUE),
var = apply(df, 1, var, na.rm = TRUE),
stringsAsFactors = FALSE)
df$CV <- 100 * df$sd/df$mean
df <- df[, c("mean", "sd", "var", "CV", "NAs", "zeros")]
df$feature <- row.names(df)
df$group <- uS
return(df)
}
})
pboptions(op)
cv_all <- do.call(rbind, res)
cv_all <- data.frame(cv_all, check.names = FALSE, stringsAsFactors = FALSE)
## histogram of CV
plot1 <- ggplot(cv_all, aes(x = mean, y = CV)) +
geom_point(size = 0.5, color = "grey") +
scale_x_continuous(trans = "log10") +
scale_y_continuous(trans = "log10") +
facet_wrap(~group) +
theme_classic()
print(plot1)
plot2 <- ggplot(cv_all, aes(x = mean, y = CV)) +
geom_point(size = 0.5, color = "grey") +
scale_x_continuous(trans = "log10") +
scale_y_continuous(trans = "log10") +
theme_classic()
plot3 <- ggplot(cv_all, aes(x=CV)) +
geom_histogram(aes(y=..density..), colour="black",
fill="skyblue", bins=50)+
labs(x="CV") + theme_classic()
print(plot_grid(plot2, plot3, ncol= 2, align="hv", labels="AUTO"))
message(date(), ": Check out the plots")
return(cv_all)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.