Nothing
## ----installAndLoadPackages,eval=TRUE------------------------------------
#install.packages("MM2S", repos="http://cran.r-project.org")
suppressPackageStartupMessages(library(MM2S))
#install.packages("MM2Sdata", repos="http://cran.r-project.org")
suppressPackageStartupMessages(library(MM2Sdata))
## ----findMouseModelSubtypes----------------------------------------------
data(GSE36594Expr)
ExprMat<-exprs(GSE36594Expr)
GTML<-ExprMat[,grep("GTML_MB",(colnames(exprs(GSE36594Expr))))]
#Change mouse sample names for clarity
for(sample in 1:ncol(GTML))
{
newnames<-strsplit(x=(colnames(GTML)[sample]),split="_")[[1]][1]
colnames(GTML)[sample]<-newnames
}
# Conduct Subtype Predictions for those particular replicates, save results in a XLS file
GTMLPreds<-MM2S.mouse(InputMatrix=GTML,parallelize=1,seed=12345, tempdir())
## ----GeneratePredictionHeatmap,echo=TRUE---------------------------------
# Now generate a heatmap of the predictions and save the results in a PDF file.
# This indicates MM2S confidence perdictions for each sample replicate of the GMTL model.
# We view the samples here.
PredictionsHeatmap(InputMatrix=GTMLPreds$Predictions[1:20,],pdf_output=TRUE,pdfheight=12,pdfwidth=10)
# NB: Output may appear on multiple pages
## ----GeneratePredictionBarplot,eval=FALSE,echo=TRUE----------------------
# # To run the function all the GTML sample replicates, please run:
# # PredictionsBarplot(InputMatrix=GTMLPreds$Predictions[1:20,],pdf_output=TRUE,pdfheight=5,pdfwidth=12)
# # NB: Output may appear on multiple pages
## ----PredictionDistributionPie,echo=TRUE---------------------------------
PredictionsDistributionPie(InputMatrix=GTMLPreds,pdf_output=TRUE,pdfheight=5,pdfwidth=5)
## ----PredictionDistributionBoxplot,echo=TRUE-----------------------------
PredictionsDistributionBoxplot(InputMatrix=GTMLPreds,pdf_output=FALSE)
## ----PCARenderingOfPredictions,echo=TRUE---------------------------------
PCARender(GSVAmatrixTesting=GTMLPreds$RankMatrixTesting,
GSVAmatrixTraining=GTMLPreds$RankMatrixTraining)
## ----findHumanModelSubtypes----------------------------------------------
data(GSE37418Expr)
HumanExpr<-exprs(GSE37418Expr)
# Conduct Subtype Predictions for all samples, save results in a XLS file
# [This will take a few minutes to compute]
HumanPreds<-MM2S.human(InputMatrix=HumanExpr,parallelize=1,seed=12345, tempdir())
## ----ComparePredictions,echo=TRUE----------------------------------------
# We first assess the distribution of the known subtypes for the 76 samples.
table(pData(GSE37418Expr)$characteristics_ch1)
# We now assess the distribtuion of MM2S predicted subtypes for the 76 samples.
table(HumanPreds$MM2S_Subtype[,2])
# Side-by-side comparison of MM2S predictions and pre-determined subtypes across all samples
# first check that all samples are matching in the pData and MM2S
all(HumanPreds$MM2S_Subtype[,1] == rownames(pData(GSE37418Expr)))
# then generate comparisons
ComparisonTable<-cbind(Sample=rownames(pData(GSE37418Expr)),
Original=as.character(pData(GSE37418Expr)$characteristics_ch1),MM2S=HumanPreds$MM2S_Subtype[,2])
# We view the first 15 samples here
ComparisonTable[1:10,]
## ----GeneratePredictionHeatmapAndPCARendering,echo=TRUE------------------
# Now generate a heatmap of the predictions and save the results in a PDF file.
# This indicates MM2S confidence perdictions for each sample.
# We can view the first 10 samples.
PredictionsHeatmap(InputMatrix=HumanPreds$Predictions[1:10,],pdf_output=TRUE,pdfheight=10,pdfwidth=5)
# NB: Output may appear on multiple pages
# We can graphically visualize different sample replicates and their nearest human Medulloblastoma (MB) neighbors
# from the MM2S training set using Principal Component Analysis (PCA).
PCARender(GSVAmatrixTesting=HumanPreds$RankMatrixTesting,
GSVAmatrixTraining=HumanPreds$RankMatrixTraining)
## ----InstallingFromGithubExample,echo=TRUE-------------------------------
# library(Biobase)
# library(devtools)
# install_github(repo="DGendoo/MM2S")
# install_github(repo="DGendoo/MM2Sdata")
## ----sessionInfo,echo=FALSE,results="asis"-------------------------------
utils::toLatex(sessionInfo())
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.