Nothing
dist.corr <-
function(X, # data set 1, maybe a multivariate data matrix, a group label vector, or 2-column survival data matrix (rows for subjects)
Y, # data set 2 may be a multivariate data matrix, a group label vector, or 2-column survival data matrix (rows for subjects)
x.dist="me", # distance metric for X, may be overall Euclidean "oe", overall Manhattan "om", marginal Euclidean "me", categorical "ct", or survival time "st"
y.dist="me") # distance metric for Y, same options as above
{
##############################################
# Check that X and Y have an equal number of observatons
if (is.vector(X)) nX=length(X)
else nX=nrow(X)
if (is.vector(Y)) nY=length(Y)
else nY=nrow(Y)
if (nX!=nY)
stop("X and Y do not have the same number of observations.")
###################################################
# compute U-centered distances for each variable (column) of each matrix
# \\tilde{a}_{st} defined on page 6 of Zhu et al
uc.X=uc.dist(X,x.dist)
uc.Y=uc.dist(Y,y.dist)
##############################################
# Sample size and dimension information
n=nX # sample size
kX=dim(uc.X)[3] # number of X variables
kY=dim(uc.Y)[3] # number of Y variables
########################################################
# Compute distance covariances for each pair of variables
dCov=matrix(NA,kX+kY,kX+kY) # Initialize the matrix
colnames(dCov)=c(attr(uc.X,"vnames"),
attr(uc.Y,"vnames"))
rownames(dCov)=colnames(dCov)
# dCov(X,X)
for (i in 1:kX) # loop over first dimension of X for pairs of dimensions of X
{
for (j in 1:i) # loop over second dimension of X for pairs of dimensions of X
{
prd=uc.X[,,i]*uc.X[,,j] # compute elementwise products of U-centered distance matrices
dCov[i,j]=(sum(prd)-sum(diag(prd)))/(n*(n-3)) # dot-product like operator for U-centered distance matrices (page 6 of Zhu et al)
dCov[j,i]=dCov[i,j] # dCov matrix is symmetric, so assign other element with same value
} # end loop over second dimension of X
} # end loop over first dimesnion of X
# dCov(Y,Y)
for (i in 1:kY) # loop over first dimension of Y for pairs of dimensions of Y
{
for (j in 1:i) # loop over second dimension of Y for pairs of dimensions of Y
{
prd=uc.Y[,,i]*uc.Y[,,j] # compute elementwise products of U-centered distance matrices
dCov[kX+i,kX+j]=(sum(prd)-sum(diag(prd)))/(n*(n-3)) # dot-product like operator for U-centered distance matrices (page 6 of Zhu et al)
dCov[kX+j,kX+i]=dCov[kX+i,kX+j] # dCov matrix is symmetric, so assign other element with same value
} # end loop over second dimension of X
} # end loop over first dimesnion of X
# dCov(X,Y)
for (i in 1:kX) # loop over dimensions of X
{
for (j in 1:kY) # loop over dimensions of Y
{
prd=uc.X[,,i]*uc.Y[,,j] # compute elementwise products of U-centered distance matrices
dCov[i,kX+j]=(sum(prd)-sum(diag(prd)))/(n*(n-3)) # dot-product like operator for U-centered distance matrices (page 6 of Zhu et al)
dCov[kX+j,i]=dCov[i,kX+j] # dCov matrix is symmetric, so assign other element with same value
} # end loop over second dimension of X
} # end loop over first dimesnion of X
#################################
# Remove large arrays that are no longer needed to save memory
rm(uc.X)
rm(uc.Y)
#gc(); gc();
#######################################################
# Covert distance covariances to distance correlations
dCor=dCov
for (i in 1:(kX+kY)) # Loop over first matrix for pairs of all variables
{
for (j in 1:i) # Loop over second matrix for pairs of all variables
{
dCor[i,j]=dCov[i,j]/sqrt(dCov[i,i]*dCov[j,j]) # definition of correlation in terms of covariance and variance
dCor[j,i]=dCor[i,j] # symmetry of correlation matrix
} # end loop over second variable in all pairs of variables
} # end loop over first variable in all pairs of variables
##################################
# Now compute mdCov and mdCor
const=sqrt(choose(n,2)) # frequently used constant in Zhu et al
odCov=sum(dCov[1:kX,kX+1:kY])*const # defined on page 12 of Zhu et al (note 2 superscript is NOT squaring in the paper)
odVarX=sum(dCov[1:kX,1:kX])*const # distance-based variance of X by defintion on page 12
odVarY=sum(dCov[kX+1:kY,kX+1:kY])*const # distance-based variance of Y
odCor=odCov/sqrt(odVarX*odVarY) # definition of correlation in terms of covariance and variance
#################################
# Compute t-statistic and t-test for mdCor
v=n*(n-3)/2 # defined on page 18 of Zhu et al
t.odCor=odCor/sqrt(1-odCor^2)*sqrt(v-1) # defined on page 17 of Zhu et al
p.odCor=2*pt(-abs(t.odCor),v-1) # defined on page 18 and 19 of Zhu et al
################################
# Compute t-stat and t-test for each dCor
t.dCor=dCor/sqrt(1-dCor^2)*sqrt(v-1) # defined on page 18 of Zhu et al
diag(t.dCor)=NA # defined on page 17 of Zhu et al
p.dCor=2*pt(-abs(t.dCor),v-1) # defined on pages 18 and 19 of Zhu et al
###################################
# result object: a list with the following components
res=list(odCor=odCor, # overall distance correlation statistic
t.odCor=t.odCor, # t-stat for overall distance correlation statistic
p.odCor=p.odCor, # p-value for overall distance correlation statistic
dCor=dCor, # distance-based correlation matrix for each pair of variables
t.dCor=t.dCor, # t-stat for distance-based correlation matrix
p.dCor=p.dCor, # p-value for distance-based correlation matrix
X=X,Y=Y, # echo input data matrices
x.dist=x.dist, # echo input distance metric for X
y.dist=y.dist) # echo input distance metric for Y
class(res)="dcor"
return(res) # return results
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.