Nothing
library(ClassDiscovery)
suppressWarnings( RNGversion("3.5.3") )
set.seed(587677)
# simulate data from three different sample groups
d1 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d2 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d3 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
dd <- cbind(d1, d2, d3)
kind <- factor(rep(c('red', 'green', 'blue'), each=10))
# prepare the Mosaic object
m <- Mosaic(dd, sampleMetric='pearson', geneMetric='spearman', center=TRUE, usecor=TRUE)
summary(m)
# The default plot with red-green color map
plot(m, col=redgreen(64))
# change to a blue-yellow color map, and mark the four top splits in the sample
# direction with a color bar along the top
plot(m, col=blueyellow(128), sampleClasses=4,
sampleColors=c('red', 'green', 'blue', 'black'))
# This time, mark the three classes that we know are there
plot(m, col=blueyellow(128), sampleClasses=kind,
sampleColors=c('red', 'green', 'blue'))
plot(m, col=blueyellow(128), geneClasses=3, geneColors=c('red', 'green', 'black'))
# In addition, mark the top 5 splits in the gene dendrogram
plot(m, col=blueyellow(128),
sampleClasses=kind, sampleColors=c('red', 'green', 'black'),
geneClasses=5, geneColors=c('cyan', 'magenta', 'royalblue', 'darkgreen', 'orange'))
# plot the sample dendrogram by itself
cols <- as.character(kind)
pltree(m, labels=1:30, colors=cols)
# cleanup
rm(d1, d2, d3, dd, kind, cols, m)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.