Nothing
library(ClassDiscovery)
suppressWarnings( RNGversion("3.5.3") )
set.seed(316912)
# simulate datda from three different groups
d1 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d2 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d3 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
dd <- cbind(d1, d2, d3)
kind <- factor(rep(c('red', 'green', 'blue'), each=10))
# perform PCA
spc <- SamplePCA(dd, splitter=kind)
# plot the results
plot(spc, col=levels(kind))
# mark the group centers
x1 <- predict(spc, matrix(apply(d1, 1, mean), ncol=1))
points(x1[1], x1[2], col='red', cex=2)
x2 <- predict(spc, matrix(apply(d2, 1, mean), ncol=1))
points(x2[1], x2[2], col='green', cex=2)
x3 <- predict(spc, matrix(apply(d3, 1, mean), ncol=1))
points(x3[1], x3[2], col='blue', cex=2)
# check out the variances
screeplot(spc)
# cleanup
rm(d1, d2, d3, dd,kind, spc, x1, x2, x3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.