tests/test04-perturb.R

library(ClassDiscovery)
suppressWarnings( RNGversion("3.5.3") )
set.seed(147676)
# simulate data from two different groups
d1 <- matrix(rnorm(100*30, rnorm(100, 0.5)), nrow=100, ncol=30, byrow=FALSE)
d2 <- matrix(rnorm(100*20, rnorm(100, 0.5)), nrow=100, ncol=20, byrow=FALSE)
dd <- cbind(d1, d2)
cols <- rep(c('red', 'green'), times=c(30,20))
# peform your basic hierarchical clustering...
hc <- hclust(distanceMatrix(dd, 'pearson'), method='complete')

# bootstrap the clusters arising from hclust
bc <- PerturbationClusterTest(dd, cutHclust, nTimes=200, k=3, metric='pearson')
summary(bc)

# look at the distribution of agreement scores
hist(bc, breaks=101)

# let heatmap compute a new dendrogram from the agreement
image(bc, col=blueyellow(64), RowSideColors=cols, ColSideColors=cols)

# plot the agreement matrix with the original dendrogram
image(bc, dendrogram=hc, col=blueyellow(64), RowSideColors=cols, ColSideColors=cols)

# bootstrap the results of K-means
kmc <- PerturbationClusterTest(dd, cutPam, nTimes=200, k=3)
image(kmc, dendrogram=hc, col=blueyellow(64), RowSideColors=cols, ColSideColors=cols)

# contrast the behavior when all the data comes from the same group
xx <- matrix(rnorm(100*50, rnorm(100, 0.5)), nrow=100, ncol=50, byrow=FALSE)
hct <- hclust(distanceMatrix(xx, 'pearson'), method='complete')
bct <- PerturbationClusterTest(xx, cutHclust, nTimes=200, k=4, metric='pearson')
summary(bct)
image(bct, dendrogram=hct, col=blueyellow(64), RowSideColors=cols, ColSideColors=cols)

# cleanup
rm(d1, d2, dd, cols, hc, bc, kmc, xx, hct, bct)

Try the ClassDiscovery package in your browser

Any scripts or data that you put into this service are public.

ClassDiscovery documentation built on May 29, 2024, 2:25 a.m.