Covariance Based Single-Cell Decomposition of Bulk Expression Data
### Cell-type decomposition This approach provides accurate cell-type proportion estimation by incorporating covariance structure in a given set of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq datasets, see Karimnezhad (2022). The approach uses an extension of the transformation used in Jew et al. (2020).
The R package is available on CRAN
install.packages("CSCDRNA")
The package can also be installed from the GitHub repository
devtools::install_github("empiricalbayes/CSCDRNA")
You can load Bisque as follows:
library(CSCDRNA)
#Load example data.
data(example_data)
#Build ExpressionSet with bulk data.
bulk.eset <- Biobase::ExpressionSet(assayData = example_data$bulk.matrix)
#Build ExpressionSet with single-cell data.
sc.counts.matrix=example_data$sc.counts.matrix
individual.labels=example_data$individual.labels
cell.type.labels=example_data$cell.type.labels
sample.ids <- colnames(sc.counts.matrix)
#individual.labels and cell.types should be in the same order as in sample.ids.
sc.pheno <- data.frame(check.names=FALSE, check.rows=FALSE,
stringsAsFactors=FALSE,row.names=sample.ids,
SubjectName=individual.labels,cellType=cell.type.labels)
sc.meta <- data.frame(labelDescription=c("SubjectName","cellType"),
row.names=c("SubjectName","cellType"))
sc.pdata <- new("AnnotatedDataFrame",data=sc.pheno, varMetadata=sc.meta)
sc.eset <- Biobase::ExpressionSet(assayData=sc.counts.matrix,phenoData=sc.pdata)
#Run CSCD on the example data.
analysis <- CSCD(bulk.eset=bulk.eset,sc.eset= sc.eset,
min.p=0.3,markers=NULL,cell.types="cellType",
subj.names="SubjectName",verbose=TRUE)
#Estimated cell-type proportions.
analysis$bulk.props
#Cell-type proportions estimated directly by counting single-cell data.
analysis$sc.props
#The covariance based transformed bulk expression used for decomposition.
analysis$transformed.bulk.
#Genes used in the decomposition.
analysis$genes.used
#Euclidean norm of the residuals for each individual's proportion estimates.
analysis$rnorm
Jew, B. et al. (2020) Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat Commun 11, 1971. https://doi.org/10.1038/s41467-020-15816-6
Karimnezhad, A. (2022) More accurate estimation of cell composition in bulk expression through robust integration of single-cell information. https://www.biorxiv.org/content/10.1101/2022.05.13.491858v1
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.