Description Usage Arguments Value Examples
The dispersion parameters of the model are optimized by penalized maximum likelihood on the count matrix given as argument.
1 2 3 4 5 6 7 8 9 | zinbOptimizeDispersion(
J,
mu,
logitPi,
epsilon,
Y,
commondispersion = TRUE,
BPPARAM = BiocParallel::bpparam()
)
|
J |
The number of genes. |
mu |
the matrix containing the mean of the negative binomial. |
logitPi |
the matrix containing the logit of the probability parameter of the zero-inflation part of the model. |
epsilon |
the regularization parameter. |
Y |
The matrix of counts. |
commondispersion |
Whether or not a single dispersion for all features is estimated (default TRUE) |
BPPARAM |
object of class |
An object of class ZinbModel similar to the one given as argument with modified parameters zeta.
1 2 3 4 5 | Y = matrix(10, 3, 5)
m = zinbModel(n=NROW(Y), J=NCOL(Y))
m = zinbInitialize(m, Y, BPPARAM=BiocParallel::SerialParam())
m = zinbOptimizeDispersion(NROW(Y), getMu(m), getLogitPi(m),
getEpsilon_zeta(m), Y, BPPARAM=BiocParallel::SerialParam())
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.