Nothing
`varphiUpdate` <-
function(X, M, psi, nSamps, sKernelType) {
## This computes the posterior mean of the covariance hyperparameters
## using a simple importance sampler
V <- NULL;
W <- NULL;
for (i in 1:nSamps) {
varphi <- rexponential(psi);
#Varphi <- diag(varphi);
PHI <- computeKernel(X, X, sKernelType, varphi) + diag(1., nrow(X));
invPHI <- chol2inv(chol(PHI)); # solve(PHI);
ws <- as.numeric(prod(diag(exp(-0.5*crossprod(M, invPHI)%*% M))));
if (is.null(V)) V <- matrix(varphi, nrow=1, ncol=length(varphi))
else V <- rbind(V, varphi);
if (is.null(W)) W <- ws
else W <- c(W, ws);
}
W <- W/sum(W);
colSums(V * matrix(rep(W, ncol(V)), byrow=FALSE, nrow=length(W), ncol=ncol(V)));
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.