Nothing
## ---- echo = FALSE------------------------------------------------------------
library(knitr)
## ---- eval = FALSE------------------------------------------------------------
# if(!requireNamespace("BiocManager", quietly = TRUE)) {
# install.packages("BiocManager")
# }
# BiocManager::install("tradeSeq")
## ---- warning=F, message=F----------------------------------------------------
library(tradeSeq)
library(RColorBrewer)
library(SingleCellExperiment)
library(slingshot)
# For reproducibility
RNGversion("3.5.0")
palette(brewer.pal(8, "Dark2"))
data(countMatrix, package = "tradeSeq")
counts <- as.matrix(countMatrix)
rm(countMatrix)
data(crv, package = "tradeSeq")
data(celltype, package = "tradeSeq")
## ---- out.width="50%", fig.asp=.6---------------------------------------------
plotGeneCount(curve = crv, clusters = celltype,
title = "Colored by cell type")
## ---- eval=FALSE--------------------------------------------------------------
# ### Based on Slingshot object
# set.seed(6)
# icMat <- evaluateK(counts = counts, sds = crv, k = 3:7, nGenes = 100,
# verbose = FALSE, plot = TRUE)
# print(icMat[1:2, ])
#
# ### Downstream of any trajectory inference method using pseudotime and cell weights
# set.seed(7)
# pseudotime <- slingPseudotime(crv, na=FALSE)
# cellWeights <- slingCurveWeights(crv)
# icMat2 <- evaluateK(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights,
# k=3:7, nGenes = 100, verbose = FALSE, plot = TRUE)
## -----------------------------------------------------------------------------
### Based on Slingshot object
set.seed(6)
sce <- fitGAM(counts = counts, sds = crv, nknots = 6, verbose = FALSE)
### Downstream of any trajectory inference method using pseudotime and cell weights
set.seed(7)
pseudotime <- slingPseudotime(crv, na = FALSE)
cellWeights <- slingCurveWeights(crv)
sce <- fitGAM(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights,
nknots = 6, verbose = FALSE)
## -----------------------------------------------------------------------------
BPPARAM <- BiocParallel::bpparam()
BPPARAM # lists current options
BPPARAM$workers <- 2 # use 2 cores
sce <- fitGAM(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights,
nknots = 6, verbose = FALSE, parallel=TRUE, BPPARAM = BPPARAM)
## -----------------------------------------------------------------------------
sce25 <- fitGAM(counts = counts, pseudotime = pseudotime, cellWeights = cellWeights,
nknots = 6, verbose = FALSE, genes = 1:25)
## -----------------------------------------------------------------------------
library(mgcv)
control <- gam.control()
control$maxit <- 1000 #set maximum number of iterations to 1K
# pass to control argument of fitGAM as below:
#
# gamList <- fitGAM(counts = counts,
# pseudotime = slingPseudotime(crv, na = FALSE),
# cellWeights = slingCurveWeights(crv),
# control = control)
## -----------------------------------------------------------------------------
gamList <- fitGAM(counts,
pseudotime = slingPseudotime(crv, na = FALSE),
cellWeights = slingCurveWeights(crv),
nknots = 6, sce = FALSE)
## -----------------------------------------------------------------------------
summary(gamList[["Irf8"]])
## ---- eval=FALSE--------------------------------------------------------------
# pvalLineage <- getSmootherPvalues(gamList)
# statLineage <- getSmootherTestStats(gamList)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.