Nothing
#' Function to implement training via sequential algorithm
#'
#' \code{sTrainSeq} is supposed to perform sequential training algorithm. It requires three inputs: a "sMap" or "sInit" object, input data, and a "sTrain" object specifying training environment. The training is implemented iteratively, each training cycle consisting of: i) randomly choose one input vector; ii) determine the winner hexagon/rectangle (BMH) according to minimum distance of codebook matrix to the input vector; ii) update the codebook matrix of the BMH and its neighbors via updating formula (see "Note" below for details). It also returns an object of class "sMap".
#'
#' @param sMap an object of class "sMap" or "sInit"
#' @param data a data frame or matrix of input data
#' @param sTrain an object of class "sTrain"
#' @param seed an integer specifying the seed
#' @param verbose logical to indicate whether the messages will be displayed in the screen. By default, it sets to TRUE for display
#' @return
#' an object of class "sMap", a list with following components:
#' \itemize{
#' \item{\code{nHex}: the total number of hexagons/rectanges in the grid}
#' \item{\code{xdim}: x-dimension of the grid}
#' \item{\code{ydim}: y-dimension of the grid}
#' \item{\code{r}: the hypothetical radius of the grid}
#' \item{\code{lattice}: the grid lattice}
#' \item{\code{shape}: the grid shape}
#' \item{\code{coord}: a matrix of nHex x 2, with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid}
#' \item{\code{ig}: the igraph object}
#' \item{\code{init}: an initialisation method}
#' \item{\code{neighKernel}: the training neighborhood kernel}
#' \item{\code{codebook}: a codebook matrix of nHex x ncol(data), with each row corresponding to a prototype vector in input high-dimensional space}
#' \item{\code{call}: the call that produced this result}
#' }
#' @note Updating formula is: \eqn{m_i(t+1) = m_i(t) + \alpha(t)*h_{wi}(t)*[x(t)-m_i(t)]}, where
#' \itemize{
#' \item{\eqn{t} denotes the training time/step}
#' \item{\eqn{i} and \eqn{w} stand for the hexagon/rectangle \eqn{i} and the winner BMH \eqn{w}, respectively}
#' \item{\eqn{x(t)} is an input vector randomly choosen (from the input data) at time \eqn{t}}
#' \item{\eqn{m_i(t)} and \eqn{m_i(t+1)} are respectively the prototype vectors of the hexagon \eqn{i} at time \eqn{t} and \eqn{t+1}}
#' \item{\eqn{\alpha(t)} is the learning rate at time \eqn{t}. There are three types of learning rate functions:}
#' \itemize{
#' \item{For "linear" function, \eqn{\alpha(t)=\alpha_0*(1-t/T)}}
#' \item{For "power" function, \eqn{\alpha(t)=\alpha_0*(0.005/\alpha_0)^{t/T}}}
#' \item{For "invert" function, \eqn{\alpha(t)=\alpha_0/(1+100*t/T)}}
#' \item{Where \eqn{\alpha_0} is the initial learing rate (typically, \eqn{\alpha_0=0.5} at "rough" stage, \eqn{\alpha_0=0.05} at "finetune" stage), \eqn{T} is the length of training time/step (often being set to input data length, i.e., the total number of rows)}
#' }
#' \item{\eqn{h_{wi}(t)} is the neighborhood kernel, a non-increasing function of i) the distance \eqn{d_{wi}} between the hexagon/rectangle \eqn{i} and the winner BMH \eqn{w}, and ii) the radius \eqn{\delta_t} at time \eqn{t}. There are five kernels available:}
#' \itemize{
#' \item{For "gaussian" kernel, \eqn{h_{wi}(t)=e^{-d_{wi}^2/(2*\delta_t^2)}}}
#' \item{For "cutguassian" kernel, \eqn{h_{wi}(t)=e^{-d_{wi}^2/(2*\delta_t^2)}*(d_{wi} \le \delta_t)}}
#' \item{For "bubble" kernel, \eqn{h_{wi}(t)=(d_{wi} \le \delta_t)}}
#' \item{For "ep" kernel, \eqn{h_{wi}(t)=(1-d_{wi}^2/\delta_t^2)*(d_{wi} \le \delta_t)}}
#' \item{For "gamma" kernel, \eqn{h_{wi}(t)=1/\Gamma(d_{wi}^2/(4*\delta_t^2)+2)}}
#' }
#' }
#' @export
#' @seealso \code{\link{sTrainology}}, \code{\link{visKernels}}
#' @include sTrainSeq.r
#' @examples
#' # 1) generate an iid normal random matrix of 100x10
#' data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
#'
#' # 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
#' # but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
#' sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
#'
#' # 3) initialise the codebook matrix using "uniform" method
#' sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
#'
#' # 4) define trainology at "rough" stage
#' sT_rough <- sTrainology(sMap=sI, data=data, algorithm="sequential", stage="rough")
#'
#' # 5) training at "rough" stage
#' sM_rough <- sTrainSeq(sMap=sI, data=data, sTrain=sT_rough)
#'
#' # 6) define trainology at "finetune" stage
#' sT_finetune <- sTrainology(sMap=sI, data=data, algorithm="sequential", stage="finetune")
#'
#' # 7) training at "finetune" stage
#' sM_finetune <- sTrainSeq(sMap=sM_rough, data=data, sTrain=sT_rough)
sTrainSeq <- function(sMap, data, sTrain, seed=825, verbose=TRUE)
{
if (!is(sMap,"sMap") & !is(sMap,"sInit")){
stop("The funciton must apply to either 'sMap' or 'sInit' object.\n")
}
xdim <- sMap$xdim
ydim <- sMap$ydim
nHex <- sMap$nHex
M <- sMap$codebook
if (is.vector(M)){
M <- matrix(M, nrow=1, ncol=length(M))
}
if (is.vector(data)){
data <- matrix(data, nrow=1, ncol=length(data))
}else if(is.matrix(data) | is.data.frame(data)){
data <- as.matrix(data)
}else if(is.null(data)){
stop("The input data must be not NULL.\n")
}
dlen <- nrow(data)
D <- data
if (!is(sTrain,"sTrain")){
stop("The funciton must apply to a 'sTrain' object.\n")
}
########### Extracting trainology ###########
## train length (tlen) is: sTrain$trainLength multiplied by dlen
tlen <- sTrain$trainLength * dlen
## neighborhood radius: goes linearly from radiusInitial to radiusFinal
radiusInitial <- sTrain$radiusInitial
radiusStep <- (sTrain$radiusFinal - sTrain$radiusInitial)/(tlen - 1)
## learning rate
alphaType <- sTrain$alphaType
alphaInitial <- sTrain$alphaInitial
if(alphaType == "invert"){
## alpha(t) = a / (t+b), where a and b are chosen suitably below, they are chosen so that alphaFinal = alphaInitial/100
b <- (tlen - 1) / (100 - 1)
a <- b * alphaInitial
}
## neighborhood kernel
neighKernel <- sTrain$neighKernel
## distances between hexagons/rectangles in a grid
Ud <- sHexDist(sObj=sMap)
Ud <- Ud^2 ## squared Ud (see notes radius below)
########################################################
## A function to indicate the running progress
progress_indicate <- function(i, B, step, flag=FALSE){
if(i %% ceiling(B/step) == 0 | i==B | i==1){
if(flag & verbose){
message(sprintf("\t%d out of %d (%s)", i, B, as.character(Sys.time())), appendLF=TRUE)
}
}
}
##################################################################
updateStep <- min(dlen,1000)
eps <- 1e-16
set.seed(seed)
for (t in 1:tlen){
progress_indicate(i=t, B=tlen, 10, flag=TRUE)
## For every updateStep: re-calculate sample index, neighborhood radius and learning rate
ind <- t %% updateStep
if(ind == 0){
ind <- updateStep
}
if(ind == 1){
steps <- t:min(tlen, t+updateStep-1)
samples <- ceiling(dlen*runif(updateStep) + eps)
## neighborhood radius
radius <- radiusInitial + (steps-1)*radiusStep
## squared radius (see notes about Ud above)
radius <- radius^2
## zero radius might cause div-by-zero error
radius[radius==0] <- eps
## learning rate
if(alphaType == "linear"){
alpha <- (1-steps/tlen)*alphaInitial
}else if(alphaType == "invert"){
alpha <- a/(b + steps-1)
}else if(alphaType == "power"){
alpha <- alphaInitial * (0.005/alphaInitial)^((steps-1)/tlen)
}
}
## pick up one sample vector
x <- matrix(D[samples[ind],], nrow=1, ncol=ncol(D))
## codebook matrix minus the sample vector
Mx <- M - matrix(rep(x, nHex), nrow=nHex, ncol=ncol(M), byrow=TRUE)
## Find best-matching hexagon/rectangle (BMH) according to minumum distance of codebook matrix from the sample vector
tmpDist <- apply(Mx^2,1,sum)
qerr <- min(tmpDist)
bmh <- min(which(tmpDist == qerr)) ## the first index (if many)
## neighborhood kernel and radius
## notice: Ud and radius have been squared
if(neighKernel == "bubble"){
h <- (Ud[,bmh] <= radius[ind])
}else if(neighKernel == "gaussian"){
h <- exp(-Ud[,bmh]/(2*radius[ind]))
}else if(neighKernel == "cutgaussian"){
h <- exp(-Ud[,bmh]/(2*radius[ind])) * (Ud[,bmh] <= radius[ind])
}else if(neighKernel == "ep"){
h <- (1-Ud[,bmh]/radius[ind]) * (Ud[,bmh] <= radius[ind])
}else if(neighKernel == "gamma"){
h <- 1/gamma(Ud[,bmh]/(4*radius[ind]) +1+1)
}
## alpha(t) * h(t)
hAlpha <- h*alpha[ind]
## update item
if(0){
updataItem <- matrix(0, nrow=nHex, ncol=ncol(M))
for(i in 1:nHex){
updataItem[i,] <- hAlpha[i] * Mx[i,]
}
}else{
tmp <- matrix(rep(hAlpha,dim(Mx)[2]), ncol=dim(Mx)[2])
updataItem <- tmp * Mx
}
## update M
M <- M - updataItem
}
##################################################################
sMap <- list( nHex = nHex,
xdim = xdim,
ydim = ydim,
r = sMap$r,
lattice = sMap$lattice,
shape = sMap$shape,
coord = sMap$coord,
ig = sMap$ig,
init = sMap$init,
neighKernel = sTrain$neighKernel,
codebook = M,
call = match.call(),
method = "suprahex")
class(sMap) <- "sMap"
sMap
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.