Nothing
## Laurent 2003
## Implemented from Genome Research, Hu et. al. , p.1244
## x <- matrix(1:20, 5, 4); tissue <- factor(c("a", "a", "b", "b"))
## SPLICE algorithm:
getRelSignStrength <- function(x, tissue=as.factor(1:ncol(x)), fun=mean, nipt=30, nitt=30, ...) {
## x: matrix. One probe per line, one column per chip
## tissue: a factor for the 'tissue' covariate
## returns the 'RSS'
## cutoff values
x[ x < 20 ] <- 20
x[ x > 5000 ] <- 5000
## mean (or 'fun') of all probe pairs in tissue X
avgDix.perx <- unlist(tapply(seq(along=tissue), tissue, function(y) fun(x[ , y])))
avgDix.perx.indices <- tapply(seq(along=tissue), tissue, function(y) y)
avgDix <- matrix(NaN, nc=ncol(x), nr=nrow(x))
for (i in seq(along=avgDix.perx.indices))
avgDix[, avgDix.perx.indices[[i]]] <- avgDix.perx[i]
## mean or 'fun' of a particular probe pair across different tissues
##avgDi <- t(apply(x, 1, function(y) tapply(y, tissue, fun)), ...)
avgDi <- apply(x, 1, fun, ...)
relsignstr <- x / avgDix[, as.integer(tissue)]
## non-informative probe threshold
nip <- avgDi < nipt
attr(relsignstr, "nip") <- nip
## non-informative tissue threshold
nit <- avgDix < nitt
attr(relsignstr, "nit") <- nit
return(relsignstr)
}
getFinalRatio <- function(x, tissue=as.factor(1:ncol(x)), fun=mean, ...) {
x <- getRelSignStrength(x, tissue=tissue, fun=fun, ...)
ex <- sapply(tissue, function(x) tissue != x, simplify=FALSE)
avgrss <- t(apply(x, 1, function(y) unlist(lapply(ex, function(z) fun(y[z])))))
fr <- log(x / avgrss)
return(fr)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.