Nothing
#' PhenoPath simulation
#'
#' Simulate counts from a pseudotime trajectory using the PhenoPath method.
#'
#' @param params PhenoParams object containing simulation parameters.
#' @param sparsify logical. Whether to automatically convert assays to sparse
#' matrices if there will be a size reduction.
#' @param verbose logical. Whether to print progress messages
#' @param ... any additional parameter settings to override what is provided in
#' \code{params}.
#'
#' @details
#' This function is just a wrapper around
#' \code{\link[phenopath]{simulate_phenopath}} that takes a
#' \code{\link{PhenoParams}}, runs the simulation then converts the
#' output from log-expression to counts and returns a
#' \code{\link[SingleCellExperiment]{SingleCellExperiment}} object. The original
#' simulated log-expression values are returned in the \code{LogExprs} assay.
#' See \code{\link[phenopath]{simulate_phenopath}} and the PhenoPath paper for
#' more details about how the simulation works.
#'
#' @return SingleCellExperiment containing simulated counts
#'
#' @references
#' Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic
#' and environmental backgrounds across single-cells and populations. bioRxiv
#' (2017).
#'
#' Paper: \url{10.1101/159913}
#'
#' Code: \url{https://github.com/kieranrcampbell/phenopath}
#'
#' @examples
#' if (requireNamespace("phenopath", quietly = TRUE)) {
#' sim <- phenoSimulate()
#' }
#' @export
#' @importFrom SingleCellExperiment SingleCellExperiment
phenoSimulate <- function(params = newPhenoParams(), sparsify = TRUE,
verbose = TRUE, ...) {
checkmate::assertClass(params, "PhenoParams")
params <- setParams(params, ...)
# Set random seed
seed <- getParam(params, "seed")
set.seed(seed)
# Get the parameters we are going to use
nCells <- getParam(params, "nCells")
nGenes <- getParam(params, "nGenes")
n.de <- getParam(params, "n.de")
n.pst <- getParam(params, "n.pst")
n.pst.beta <- getParam(params, "n.pst.beta")
n.de.pst.beta <- getParam(params, "n.de.pst.beta")
if (verbose) {message("Simulating counts...")}
pheno.sim <- phenopath::simulate_phenopath(N = nCells,
G_de = n.de,
G_pst = n.pst,
G_pst_beta = n.pst.beta,
G_de_pst_beta = n.de.pst.beta)
if (verbose) {message("Creating final dataset...")}
cell.names <- paste0("Cell", seq_len(nCells))
gene.names <- paste0("Gene", seq_len(nGenes))
exprs <- t(pheno.sim$y)
counts <- 2 ^ exprs - 1
counts[counts < 0] <- 0
counts <- round(counts)
rownames(counts) <- gene.names
colnames(counts) <- cell.names
cells <- data.frame(Cell = cell.names,
Covariate = pheno.sim$x,
Pseudotime = pheno.sim$z)
rownames(cells) <- cell.names
features <- data.frame(Gene = gene.names,
Alpha = pheno.sim$parameters$alpha,
Lambda = pheno.sim$parameters$lambda,
Beta = pheno.sim$parameters$beta,
Regime = pheno.sim$parameters$regime)
rownames(features) <- gene.names
sim <- SingleCellExperiment(assays = list(counts = counts,
LogExprs = exprs),
rowData = features,
colData = cells,
metadata = list(Params = params))
if (sparsify) {
if (verbose) {message("Sparsifying assays...")}
assays(sim) <- sparsifyMatrices(assays(sim), auto = TRUE,
verbose = verbose)
}
return(sim)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.