Nothing
## Make targets file of the Arabidopsis shoot example.
library(GEOquery)
# Download GEO dataset GSE14502 (normalised by RMA).
gset <- getGEO("GSE14502", GSEMatrix =TRUE, getGPL=FALSE)[[1]]
# Assign tissue/condition names.
se <- as(gset, "SummarizedExperiment")
# Targets file.
col.name <- colnames(se)
titles <- make.names(colData(se)$title)
title.factor <- sub('_rep\\d+$', '', titles)
sam <- gsub('(root|shoot)(_)(control|hypoxia)(_.*)', '\\1\\4', title.factor)
con <- gsub('(root|shoot)(_)(control|hypoxia)(_.*)', '\\3', title.factor)
target.geo <- data.frame(col.name=col.name, titles=titles, row.names=2, samples=sam, conditions=con, stringsAsFactors=FALSE)
write.table(target.geo, 'target_geo.txt', col.names=TRUE, row.names=TRUE, sep='\t')
library(ath1121501.db); library(genefilter)
# Gene annotation.
ann <- data.frame(SYMBOL=sapply(contents(ath1121501SYMBOL), paste, collapse=";"), DESC=sapply(contents(ath1121501GENENAME), paste, collapse=";"), stringsAsFactors=FALSE)
ann <- subset(ann, !grepl("AFFX|s_at|a_at|x_at|r_at", rownames(ann)) & !duplicated(SYMBOL) & SYMBOL!="NA")
# Optional: data frame for gene metadata.
mat <- assay(se); colnames(mat) <- rownames(target.geo)
int <- intersect(rownames(mat), rownames(ann))
mat <- mat[int, ]; rownames(mat) <- make.names(ann[int, 'SYMBOL'])
ffun <- filterfun(pOverA(0.03, 6), cv(0.25, 100))
filtered <- genefilter(mat, ffun); mat <- mat[filtered, ]
write.table(mat, 'target_arab.txt', col.names=TRUE, row.names=TRUE, sep='\t')
## Make target file-human brain example.
# Search for human samples related to brain.
all.res <- searchAtlasExperiments(properties="brain", species="Homo sapiens")
# Select "E-GEOD-67196", which is RNA-seq data of cerebellum and frontal cortex in brain.
rse.hum <- getAtlasData('E-GEOD-67196')[[1]][[1]]
# Tissue/condition metadata.
df.con <- as.data.frame(colData(rse.hum)); df.con[1:3, ]
# The matching tissues in the SVG template are "cerebellum" and "frontal_cortex" while in the expression data are "cerebellum" and "frontal cortex". The tissue names must be exactly same between the SVG and the expression matrix, so change "frontal cortex" to "frontal_cortex".
# df.con$organism_part <- sub(' ', '_', df.con$organism_part)
# Use abbreviations of the conditions ("individual", "disease", "genotype").
df.con$individual <- sub('individual', 'indi', df.con$individual)
df.con$individual <- sub('Individual ', 'indi', df.con$individual)
df.con$disease <- sub('amyotrophic lateral sclerosis', 'ALS', df.con$disease)
df.con$genotype <- sub('presence of a C9orf72 repeat expansion', 'pre.C9orf72', df.con$genotype)
df.con$genotype <- sub('absence of a C9orf72 repeat expansion', 'ab.C9orf72', df.con$genotype)
df.con$genotype <- sub('not applicable', 'NA', df.con$genotype)
write.table(df.con, 'target_human.txt', col.names=TRUE, row.names=TRUE, sep='\t')
## Make target file-mouse organ example.
# Search for mouse samples related to heart.
all.mus <- searchAtlasExperiments(properties="heart", species="Mus musculus")
# Select "E-MTAB-2801".
all.mus[7:8, ]
rse.mus <- getAtlasData('E-MTAB-2801')[[1]][[1]]
# Tissue/condition metadata.
df.con <- as.data.frame(colData(rse.mus)); df.con[1:3, ]
df.con$organism_part <- gsub('skeletal muscle tissue', 'skeletal muscle', df.con$organism_part)
df.con$strain <- make.names(df.con$strain)
write.table(df.con, 'target_mouse.txt', col.names=TRUE, row.names=TRUE, sep='\t')
## Make target file-chicken organ example.
# Search for chicken samples related to gallus.
all.chk <- searchAtlasExperiments(properties="", species="gallus")
# Select E-MTAB-6769.
all.chk[11:12, ]
rse.chk <- getAtlasData('E-MTAB-6769')[[1]][[1]]
# Tissue/condition metadata.
df.con <- as.data.frame(colData(rse.chk)); df.con[1:3, ]
df.con$age <- gsub('(.*) (.*)', '\\2\\1', df.con$age)
write.table(df.con, 'target_chicken.txt', col.names=TRUE, row.names=TRUE, sep='\t')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.