colWeightedMads-dgCMatrix-method: Calculates the weighted median absolute deviation for each...

Description Usage Arguments Details Value See Also Examples

Description

Calculates the weighted median absolute deviation for each row (column) of a matrix-like object.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
## S4 method for signature 'dgCMatrix'
colWeightedMads(
  x,
  w = NULL,
  rows = NULL,
  cols = NULL,
  na.rm = FALSE,
  constant = 1.4826,
  center = NULL
)

## S4 method for signature 'dgCMatrix'
rowWeightedMads(
  x,
  w = NULL,
  rows = NULL,
  cols = NULL,
  na.rm = FALSE,
  constant = 1.4826
)

Arguments

x

An NxK matrix-like object.

w

A numeric vector of length K (N) that specifies by how much each element is weighted.

rows

A vector indicating the subset of rows (and/or columns) to operate over. If NULL, no subsetting is done.

cols

A vector indicating the subset of rows (and/or columns) to operate over. If NULL, no subsetting is done.

na.rm

If TRUE, NAs are excluded first, otherwise not.

constant

A scale factor. See stats::mad() for details.

center

Not supported at the moment.

Details

The S4 methods for x of type matrix, array, or numeric call matrixStats::rowWeightedMads / matrixStats::colWeightedMads.

Value

Returns a numeric vector of length N (K).

See Also

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
  mat <- matrix(0, nrow=10, ncol=5)
  mat[sample(prod(dim(mat)), 25)] <- rpois(n=25, 5)
  sp_mat <- as(mat, "dgCMatrix")
  weights <- rnorm(10, mean=1, sd=0.1)

  # sparse version
  sparseMatrixStats::colWeightedMads(sp_mat, weights)

  # Attention the result differs from matrixStats
  # because it always uses 'interpolate=FALSE'.
  matrixStats::colWeightedMads(mat, weights)

sparseMatrixStats documentation built on Feb. 4, 2021, 2 a.m.