Description Usage Arguments Value Author(s) Examples
This function takes the results from function generateNull()
and plots the density curves of permuted scores for the provided samples via
sampleNames
parameter. It can plot null distribution(s) for a single
sample or multiple samples.
1 2 3 4 5 6 7 8 9 |
permuteResult |
A matrix, null distributions for each sample generated
using the |
scoredf |
A dataframe, singscores generated using the |
pvals |
A vector, estimated p-values using the |
sampleNames |
A character vector, sample IDs for which null distributions will be plotted |
cutoff |
numeric, the cutoff value for determining significance |
textSize |
numeric, size of axes labels, axes values and title |
labelSize |
numeric, size of label texts |
a ggplot object
Ruqian Lyu
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ranked <- rankGenes(toy_expr_se)
scoredf <- simpleScore(ranked, upSet = toy_gs_up, downSet = toy_gs_dn)
# find out what backends can be registered on your machine
BiocParallel::registered()
# the first one is the default backend, and it can be changed explicitly.
permuteResult = generateNull(upSet = toy_gs_up, downSet = toy_gs_dn, ranked,
B =10, seed = 1,useBPPARAM = NULL)
# call the permutation function to generate the empirical scores
#for B times.
pvals <- getPvals(permuteResult,scoredf)
# plot for all samples
plotNull(permuteResult,scoredf,pvals,sampleNames = names(pvals))
#plot for the first sample
plotNull(permuteResult,scoredf,pvals,sampleNames = names(pvals)[1])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.