Nothing
#' Target Set Enrichment Analysis (TSEA) with meanAbs
#'
#' The meanAbs (mabs) method is a simple but effective functional enrichment
#' statistic (Fang et al., 2012). As required for TSEA, it supports query label
#' sets (here for target proteins/genes) with duplications by transforming them
#' to score ranked label lists and then calculating mean absolute scores of
#' labels in label set \eqn{S}.
#'
#' The input for the mabs method is \eqn{L_tar}, the same as for mGSEA. In this
#' enrichment statistic, \eqn{mabs(S)}, of a label (e.g. gene/protein) set
#' \eqn{S} is calculated as mean absolute scores of the labels in \eqn{S}. In
#' order to adjust for size variations in label set \eqn{S}, 1000 random
#' permutations of \eqn{L_tar} are performed to determine \eqn{mabs(S,pi)}.
#'Subsequently, \eqn{mabs(S)} is normalized by subtracting the median of the
#' \eqn{mabs(S,pi)} and then dividing by the standard deviation of
#' \eqn{mabs(S,pi)} yielding the normalized scores \eqn{Nmabs(S)}. Finally, the
#' portion of \eqn{mabs(S,pi)} that is greater than \eqn{mabs(S)} is used as
#' nominal p-value (Fang et al., 2012). The resulting nominal p-values are
#' adjusted for multiple hypothesis testing using the Benjamini-Hochberg method.
#' @section Column description:
#' The TSEA results (including \code{tsea_mabs}) stored in the
#' \code{feaResult} object can be returned with the \code{result} method in
#' tabular format, here \code{tibble}. The columns in this \code{tibble}
#' specific to the \code{mabs} method are described below.
#' \itemize{
#' \item mabs: given a scored ranked gene list \eqn{L}, \eqn{mabs(S)}
#' represents the mean absolute scores of the genes in set \eqn{S}.
#' \item Nmabs: \eqn{mabs(S)} normalized
#' }
#' Additional columns are described under the 'result' slot of the
#' \code{\link{feaResult}} object.
#' @param drugs character vector containing drug identifiers used for functional
#' enrichment testing. This can be the top ranking drugs from a GESS result.
#' Internally, drug test sets are translated to the corresponding target protein
#' test sets based on the drug-target annotations provided under the
#' \code{dt_anno} argument.
#' @param type one of `GO`, `KEGG` or `Reactome`
#' @param ont character(1). If type is `GO`, assign \code{ont} (ontology) one of
#' `BP`,`MF`, `CC` or `ALL`. If type is `KEGG` or `Reactome`, \code{ont} is ignored.
#' @param nPerm integer, permutation number used to calculate p-values
#' @param pAdjustMethod p-value adjustment method,
#' one of 'holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr'
#' @param pvalueCutoff double, p-value cutoff
#' @param minGSSize integer, minimum size of each gene set in annotation system
#' @param maxGSSize integer, maximum size of each gene set in annotation system
#' @param dt_anno drug-target annotation source. Currently, one of 'DrugBank',
#' 'CLUE', 'STITCH' or 'all'. If 'dt_anno' is 'all', the targets from the
#' DrugBank, CLUE and STITCH databases will be combined. Usually, it is
#' recommended to set the 'dt_anno' to 'all' since it provides the most
#' complete drug-target annotations. Choosing a single
#' annotation source results in sparser drug-target annotations
#' (particularly CLUE), and thus less complete enrichment results.
#' @param readable TRUE or FALSE, it applies when type is `KEGG` or `Reactome`
#' indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID'
#' column in the result table.
#' @return \code{\link{feaResult}} object, the result table contains the
#' enriched functional categories (e.g. GO terms or KEGG pathways) ranked by
#' the corresponding enrichment statistic.
#' @seealso \code{\link{feaResult}}, \code{\link{fea}}, \code{\link{tsea_mGSEA}}
#' @references Fang, Z., Tian, W., & Ji, H. (2012). A network-based
#' gene-weighting approach for pathway analysis. Cell Research, 22(3),
#' 565-580. URL: https://doi.org/10.1038/cr.2011.149
#' @examples
#' data(drugs10)
#' ## GO annotation system
#' #res1 <- tsea_mabs(drugs=drugs10, type="GO", ont="MF", nPerm=1000,
#' # pvalueCutoff=0.05, minGSSize=5)
#' #result(res1)
#' ## KEGG annotation system
#' #res2 <- tsea_mabs(drugs=drugs10, type="KEGG", nPerm=1000,
#' # pvalueCutoff=0.05, minGSSize=5)
#' #result(res2)
#' ## Reactome annotation system
#' #res3 <- tsea_mabs(drugs=drugs10, type="Reactome", pvalueCutoff=1)
#' #result(res3)
#' @export
#'
tsea_mabs <- function(drugs,
type="GO", ont="MF",
nPerm=1000,
pAdjustMethod="BH", pvalueCutoff=0.05,
minGSSize=5, maxGSSize=500,
dt_anno="all", readable=FALSE){
if(!any(type %in% c("GO", "KEGG", "Reactome"))){
stop('"type" argument needs to be one of "GO", "KEGG" or "Reactome"')
}
drugs <- unique(tolower(drugs))
targets <- get_targets(drugs, database = dt_anno)
gnset <- na.omit(unlist(lapply(targets$t_gn_sym, function(i)
unlist(strsplit(as.character(i), split = "; ")))))
# give scores to gnset
tar_tab <- table(gnset)
tar_dup <- as.numeric(tar_tab); names(tar_dup) <- names(tar_tab)
tar_weight <- sort(tar_dup/sum(tar_dup), decreasing = TRUE)
if(type=="GO"){
# Get universe genes in GO annotation system
universe <- univ_go
tar_diff <- setdiff(universe, gnset)
tar_diff_weight <- rep(0, length(tar_diff))
names(tar_diff_weight) <- tar_diff
tar_total_weight <- c(tar_weight, tar_diff_weight)
mabsgo <- mabsGO(geneList = tar_total_weight, OrgDb = "org.Hs.eg.db",
ont = ont, keyType = "SYMBOL", nPerm = nPerm,
minGSSize = minGSSize, maxGSSize = maxGSSize,
pvalueCutoff = pvalueCutoff, pAdjustMethod=pAdjustMethod)
if(is.null(mabsgo))
return(NULL)
drugs(mabsgo) <- drugs
return(mabsgo)
}
# convert gnset symbol to entrez
OrgDb <- load_OrgDb("org.Hs.eg.db")
gnset_map <- suppressMessages(AnnotationDbi::select(OrgDb, keys = gnset,
keytype = "SYMBOL", columns = "ENTREZID"))
gnset_entrez <- as.character(na.omit(gnset_map$ENTREZID))
# give scores to gnset_entrez
tar_tab <- table(gnset_entrez)
tar_dup <- as.numeric(tar_tab); names(tar_dup) <- names(tar_tab)
tar_weight <- sort(tar_dup/sum(tar_dup), decreasing = TRUE)
if(type=="KEGG"){
# Get universe genes in KEGG annotation system
KEGG_DATA <- prepare_KEGG(species="hsa", "KEGG", keyType="kegg")
keggterms <- get("PATHID2EXTID", KEGG_DATA)
universe <- unique(unlist(keggterms))
tar_diff <- setdiff(universe, gnset_entrez)
tar_diff_weight <- rep(0, length(tar_diff))
names(tar_diff_weight) <- tar_diff
tar_total_weight <- c(tar_weight, tar_diff_weight)
mabs_res <- mabsKEGG(geneList=tar_total_weight, organism='hsa',
keyType='kegg', nPerm = nPerm,
minGSSize = minGSSize, maxGSSize=maxGSSize,
pvalueCutoff=pvalueCutoff, pAdjustMethod = pAdjustMethod,
readable=readable)
}
if(type=="Reactome"){
# Get universe genes in Reactome annotation system
Reactome_DATA <- get_Reactome_DATA(organism="human")
raterms <- get("PATHID2EXTID", Reactome_DATA)
universe <- unique(unlist(raterms))
tar_diff <- setdiff(universe, gnset_entrez)
tar_diff_weight <- rep(0, length(tar_diff))
names(tar_diff_weight) <- tar_diff
tar_total_weight <- c(tar_weight, tar_diff_weight)
mabs_res <- mabsReactome(geneList=tar_total_weight, organism='human',
nPerm = nPerm,
minGSSize = minGSSize, maxGSSize=maxGSSize,
pvalueCutoff=pvalueCutoff, pAdjustMethod=pAdjustMethod,
readable=readable)
}
if(is.null(mabs_res))
return(NULL)
drugs(mabs_res) <- drugs
return(mabs_res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.