Nothing
#' The \code{tsea_mGSEA} function performs a Modified Gene Set Enrichment
#' Analysis (mGSEA) that supports test sets (e.g. genes or protein IDs) with
#' duplications. The duplication support is
#' achieved by a weighting method for duplicated items, where the weighting is
#' proportional to the frequency of the items in the test set.
#'
#' The original GSEA method proposed by Subramanian et at., 2005 uses
#' predefined gene sets \eqn{S} defined by functional annotation systems
#' such as GO and KEGG. The goal is to determine whether the genes in \eqn{S}
#' are randomly distributed throughout a ranked test gene list \eqn{L}
#' (e.g. all genes ranked by log2 fold changes) or enriched at the top or
#' bottom of the test list. This is expressed by an
#' Enrichment Score (\eqn{ES}) reflecting the degree to which a set \eqn{S}
#' is overrepresented at the extremes of \eqn{L}.
#'
#' For TSEA, the query is a target protein set where duplicated entries need to
#' be maintained. To perform GSEA with duplication support, here referred to as
#' mGSEA, the target set is transformed to a score ranked target list
#' \eqn{L_tar} of all targets provided by the
#' corresponding annotation system. For each target in the query target set,
#' its frequency is divided by the number of targets in the target set,
#' which is the weight of that target.
#' For targets present in the annotation system but absent in the
#' target set, their scores are set to 0. Thus, every target in the annotation
#' system will be assigned a score and then sorted decreasingly to obtain
#' \eqn{L_tar}.
#'
#' In case of TSEA, the original GSEA method cannot be used directly since a
#' large portion of zeros exists in \eqn{L_tar}. If the scores of the genes in
#' set \eqn{S} are all zeros, \eqn{N_R} (sum of scores of genes in set
#' \eqn{S}) will be zero, which cannot be used as the denominator.
#' In this case, \eqn{ES} is set to -1. If only some genes in set \eqn{S}
#' have scores of zeros then \eqn{N_R} is set to a larger number to decrease
#' the weight of the genes in \eqn{S} that have non-zero scores.
#'
#' The reason for this modification is that if only one gene in gene set
#' \eqn{S} has a non-zero score and this gene ranks high in \eqn{L_tar},
#' the weight of this gene will be 1 resulting in an \eqn{ES(S)} close to 1.
#' Thus, the original GSEA method will score the gene set \eqn{S} as
#' significantly enriched. However, this is undesirable because in this
#' example only one gene is shared among the target set and the gene set
#' \eqn{S}. Therefore, giving small weights (lowest non-zero score in \eqn{L_tar})
#' to genes in \eqn{S} that have zero scores could decrease the weight of the
#' genes in \eqn{S} that have non-zero scores, thereby decreasing the false
#' positive rate. To favor truly enriched functional categories (gene set \eqn{S})
#' at the top of \eqn{L_tar}, only gene sets with positive \eqn{ES} are selected.
#' @section Column description:
#' The TSEA results (including \code{tsea_mGSEA}) stored in the \code{feaResult}
#' object can be returned with the \code{result} method in tabular format,
#' here \code{tibble}. The columns of this \code{tibble} are described below.
#' \itemize{
#' \item enrichmentScore: ES from the GSEA algorithm
#' (Subramanian et al., 2005). The score is calculated by walking down the
#' gene list L, increasing a running-sum statistic when we encounter a gene
#' in S and decreasing when it is not. The magnitude of the increment
#' depends on the gene scores. The ES is the maximum deviation from zero
#' encountered in the random walk. It corresponds to a weighted
#' Kolmogorov-Smirnov-like statistic.
#' \item NES: Normalized enrichment score. The positive and negative
#' enrichment scores are normalized separately by permutating the
#' composition of the gene list L \code{nPerm} times, and dividing the
#' enrichment score by the mean of the permutation ES with the same sign.
#' \item pvalue: The nominal p-value of the ES is calculated using a
#' permutation test. Specifically, the composition of the gene list L is
#' permuted and the ES of the gene set is recomputed for the permutated
#' data generating a null distribution for the ES. The p-value of the
#' observed ES is then calculated relative to this null distribution.
#' \item leadingEdge: Genes in the gene set S (functional category) that
#' appear in the ranked list L at, or before, the point where the running
#' sum reaches its maximum deviation from zero. It can be interpreted as
#' the core of a gene set that accounts for the enrichment signal.
#' \item ledge_rank: Ranks of genes in 'leadingEdge' in gene list L.
#' }
#' Additional columns are described under the 'result' slot of the
#' \code{\link{feaResult}} object.
#'
#' @title Target Set Enrichment Analysis (TSEA) with mGSEA Algorithm
#' @param drugs character vector containing drug identifiers used for functional
#' enrichment testing. This can be the top ranking drugs from a GESS result.
#' Internally, drug test sets are translated to the corresponding target protein
#' test sets based on the drug-target annotations provided under the
#' \code{dt_anno} argument.
#' @param type one of `GO`, `KEGG` or `Reactome`
#' @param ont character(1). If type is `GO`, assign \code{ont} (ontology) one of
#' `BP`,`MF`, `CC` or `ALL`. If type is `KEGG` or `Reactome`, \code{ont} is ignored.
#' @param nPerm integer defining the number of permutation iterations for
#' calculating p-values
#' @param exponent integer value used as exponent in GSEA algorithm. It defines
#' the weight of the items in the item set \eqn{S}.
#' @param pAdjustMethod p-value adjustment method,
#' one of 'holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr'
#' @param pvalueCutoff double, p-value cutoff
#' @param minGSSize integer, minimum size of each gene set in annotation system
#' @param maxGSSize integer, maximum size of each gene set in annotation system
#' @param verbose TRUE or FALSE, print message or not
#' @param dt_anno drug-target annotation source. Currently, one of 'DrugBank',
#' 'CLUE', 'STITCH' or 'all'. If 'dt_anno' is 'all', the targets from the
#' DrugBank, CLUE and STITCH databases will be combined. Usually, it is
#' recommended to set the 'dt_anno' to 'all' since it provides the most
#' complete drug-target annotations. Choosing a single
#' annotation source results in sparser drug-target annotations
#' (particularly CLUE), and thus less complete enrichment results.
#' @param readable TRUE or FALSE, it applies when type is `KEGG` or `Reactome`
#' indicating whether to convert gene Entrez ids to gene Symbols in the 'itemID'
#' column in the result table.
#' @return \code{\link{feaResult}} object, the result table contains the
#' enriched functional categories (e.g. GO terms or KEGG pathways) ranked by
#' the corresponding enrichment statistic.
#' @seealso \code{\link{feaResult}}, \code{\link{fea}}
#' @references
#' GSEA algorithm:
#' Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L.,
#' Gillette, M. A., Mesirov, J. P. (2005). Gene set enrichment analysis: a
#' knowledge-based approach for interpreting genome-wide expression profiles.
#' Proceedings of the National Academy of Sciences of the United States of
#' America, 102(43), 15545-15550. URL: https://doi.org/10.1073/pnas.0506580102
#' @examples
#' data(drugs10)
#' ## GO annotation system
#' #res1 <- tsea_mGSEA(drugs=drugs10, type="GO", ont="MF", exponent=1,
#' # nPerm=1000, pvalueCutoff=1, minGSSize=5)
#' #result(res1)
# ## KEGG annotation system
#' #res2 <- tsea_mGSEA(drugs=drugs10, type="KEGG", exponent=1,
#' # nPerm=100, pvalueCutoff=1, minGSSize=5)
#' #result(res2)
#' ## Reactome annotation system
#' #res3 <- tsea_mGSEA(drugs=drugs10, type="Reactome", pvalueCutoff=1)
#' #result(res3)
#' @export
tsea_mGSEA <- function(drugs, type="GO", ont="MF", nPerm=1000, exponent=1,
pAdjustMethod="BH", pvalueCutoff=0.05,
minGSSize=5, maxGSSize=500, verbose=FALSE,
dt_anno="all", readable=FALSE){
if(!any(type %in% c("GO", "KEGG", "Reactome"))){
stop('"type" argument needs to be one of "GO", "KEGG" or "Reactome"')
}
drugs <- unique(tolower(drugs))
targets <- get_targets(drugs, database = dt_anno)
gnset <- na.omit(unlist(lapply(targets$t_gn_sym, function(i)
unlist(strsplit(as.character(i), split = "; ")))))
# give scores to gnset
tar_tab <- table(gnset)
tar_dup <- as.numeric(tar_tab); names(tar_dup) <- names(tar_tab)
tar_weight <- sort(tar_dup/sum(tar_dup), decreasing = TRUE)
if(type=="GO"){
# Get universe genes in GO annotation system
universe <- univ_go
tar_diff <- setdiff(universe, gnset)
tar_diff_weight <- rep(0, length(tar_diff))
names(tar_diff_weight) <- tar_diff
tar_total_weight <- c(tar_weight, tar_diff_weight)
gsego <- gseGO2(geneList = tar_total_weight, OrgDb = "org.Hs.eg.db",
ont = ont, keyType = "SYMBOL", nPerm = nPerm,
minGSSize = minGSSize, maxGSSize = maxGSSize,
exponent = exponent, nproc=1, verbose=verbose,
pvalueCutoff = pvalueCutoff, pAdjustMethod=pAdjustMethod)
if(is.null(gsego))
return(NULL)
drugs(gsego) <- drugs
return(gsego)
}
# convert gnset symbol to entrez
OrgDb <- load_OrgDb("org.Hs.eg.db")
gnset_map <- suppressMessages(AnnotationDbi::select(OrgDb, keys = gnset,
keytype = "SYMBOL", columns = "ENTREZID"))
gnset_entrez <- as.character(na.omit(gnset_map$ENTREZID))
# give scores to gnset_entrez
tar_tab <- table(gnset_entrez)
tar_dup <- as.numeric(tar_tab); names(tar_dup) <- names(tar_tab)
tar_weight <- sort(tar_dup/sum(tar_dup), decreasing = TRUE)
if(type=="KEGG"){
# Get universe genes in KEGG annotation system
KEGG_DATA <- prepare_KEGG(species="hsa", "KEGG", keyType="kegg")
keggterms <- get("PATHID2EXTID", KEGG_DATA)
universe <- unique(unlist(keggterms))
tar_diff <- setdiff(universe, gnset_entrez)
tar_diff_weight <- rep(0, length(tar_diff))
names(tar_diff_weight) <- tar_diff
tar_total_weight <- c(tar_weight, tar_diff_weight)
gse_res <- gseKEGG2(geneList=tar_total_weight, organism='hsa', keyType='kegg',
nPerm=nPerm, exponent=exponent,
minGSSize = minGSSize, maxGSSize=maxGSSize,
pvalueCutoff=pvalueCutoff, pAdjustMethod = pAdjustMethod,
verbose = verbose, readable=readable)
}
if(type=="Reactome"){
# Get universe genes in Reactome annotation system
Reactome_DATA <- get_Reactome_DATA(organism="human")
raterms <- get("PATHID2EXTID", Reactome_DATA)
universe <- unique(unlist(raterms))
tar_diff <- setdiff(universe, gnset_entrez)
tar_diff_weight <- rep(0, length(tar_diff))
names(tar_diff_weight) <- tar_diff
tar_total_weight <- c(tar_weight, tar_diff_weight)
gse_res <- gseReactome(geneList=tar_total_weight, organism='human',
exponent=exponent, nPerm=nPerm,
minGSSize = minGSSize, maxGSSize=maxGSSize,
pvalueCutoff=pvalueCutoff, pAdjustMethod= pAdjustMethod,
verbose = verbose, readable=readable)
}
if(!is.null(gse_res))
drugs(gse_res) <- drugs
return(gse_res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.