Nothing
#########################################################################
## Name: sigFeature.R
## Author: Pijush Das, Dr. Susanta Roychudhury, Dr. Sucheta Tripathy
##
##
## Change Log:
## * April 4, 2018
## - split sigFeature.R into several files for easier readability
## and maintenance
#########################################################################
#########################################################################
## sigFeature(): The prime intention of this algorithm is to enumerate
## the ranking weights for all features and sort the features according
## to weight vectors as the classification basis.
##
##
#########################################################################
sigFeature = function(X, Y){
#Checking for the variables
stopifnot(!is.null(X) == TRUE, !is.null(Y) == TRUE)
m = seq_len(dim(X)[1])
clsA <- X[m[which(Y == names(table(Y))[1])], ]
clsB <- X[m[which(Y == names(table(Y))[2])], ]
pvals <- lapply(seq_len(dim(clsA)[2]),
function(i)t.test(clsA[ ,i],clsB[ ,i])$p.value)
md <- unlist(pvals)
y = c(rep(-1, as.vector(table(Y))[1]),rep(1, as.vector(table(Y))[2]))
x <- X[c(m[which(Y == names(table(Y))[1])],
m[which(Y == names(table(Y))[2])]), ]
n = ncol(x)
breatheFeaturesIndexes = seq_len(n)
featureCodifiedList = vector(length=n)
codifiedFeatureIndex = n
while(length(breatheFeaturesIndexes) > 0){
svmModel = svm(x[, breatheFeaturesIndexes], y, cost = 10,
cachesize=500,scale=FALSE, type="C-classification", kernel="linear")
rankingCriteria <- t(svmModel$coefs*y[svmModel$index]) %*% svmModel$SV * md
ranking = sort(rankingCriteria, index.return = TRUE)$ix
featureCodifiedList[codifiedFeatureIndex] =
breatheFeaturesIndexes[ranking[1]]
codifiedFeatureIndex = codifiedFeatureIndex - 1
(breatheFeaturesIndexes = breatheFeaturesIndexes[-ranking[1]])
md = md[-ranking[1]]
}
return(featureCodifiedList)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.