Nothing
## -----------------------------------------------------------------------------
suppressPackageStartupMessages(library(SingleCellExperiment))
library(ggplot2); theme_set(theme_bw())
library(DuoClustering2018)
require(scry)
## -----------------------------------------------------------------------------
sce<-sce_full_Zhengmix4eq()
#m<-counts(sce) #UMI counts
#cm<-as.data.frame(colData(sce))
## ----fig.width=6, fig.height=4------------------------------------------------
sce<-devianceFeatureSelection(sce, assay="counts", sorted=TRUE)
plot(rowData(sce)$binomial_deviance, type="l", xlab="ranked genes",
ylab="binomial deviance", main="Feature Selection with Deviance")
abline(v=2000, lty=2, col="red")
## -----------------------------------------------------------------------------
sce2<-sce[1:1000, ]
## ----fig.width=6, fig.height=4------------------------------------------------
set.seed(101)
sce2<-GLMPCA(sce2, 2, assay="counts")
fit<-metadata(sce2)$glmpca
pd<-cbind(as.data.frame(colData(sce2)), fit$factors)
ggplot(pd, aes(x=dim1, y=dim2, colour=phenoid)) + geom_point(size=.8) +
ggtitle("GLM-PCA applied to high deviance genes")
## ----fig.width=6, fig.height=8------------------------------------------------
sce<-nullResiduals(sce, assay="counts", type="deviance")
sce<-nullResiduals(sce, assay="counts", type="pearson")
sce2<-sce[1:1000, ] #use only the high deviance genes
pca<-function(Y, L=2, center=TRUE, scale=TRUE){
#assumes features=rows, observations=cols
res<-prcomp(as.matrix(t(Y)), center=center, scale.=scale, rank.=L)
factors<-as.data.frame(res$x)
colnames(factors)<-paste0("dim", 1:L)
factors
}
pca_d<-pca(assay(sce2, "binomial_deviance_residuals"))
pca_d$resid_type<-"deviance_residuals"
pca_p<-pca(assay(sce2, "binomial_pearson_residuals"))
pca_p$resid_type<-"pearson_residuals"
cm<-as.data.frame(colData(sce2))
pd<-rbind(cbind(cm, pca_d), cbind(cm, pca_p))
ggplot(pd, aes(x=dim1, y=dim2, colour=phenoid)) + geom_point() +
facet_wrap(~resid_type, scales="free", nrow=2) +
ggtitle("PCA applied to null residuals of high deviance genes")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.