Nothing
#' Visualize gene isoforms
#'
#' Visualize reference genome. Rectangles represent exons. Arrow represents
#' orientation of transcripts.
#'
#' @param gtfFile A genome annotation file in GTF format.
#' @param chr Chromosome name. Integer or "X", "Y", "MT".
#' @param start Genomic coordinate of the start position.
#' @param end Genomic coordinate of the end position.
#' @param rect_width Exon widths. Default 0.3.
#' @param line_width Line weight. Default 0.5.
#' @param arrow_segments The number of segments lines be divided to. The
#' greater the number, more arrows there are. Default 10.
#' @param arrow_width The angle of the arrow head in degrees (smaller numbers
#' produce narrower, pointier arrows). Essentially describes the width of the
#' arrow head. Passed to the angle parameter of arrow function. Default 30.
#' @param arrow_length The length of the arrow head. Passed to the length
#' argument of arrow function. Default 0.08.
#' @param arrow_type One of "open" or "closed" indicating whether the arrow
#' head should be a closed triangle. Passed to the type argument of arrow
#' function. Default "open".
#' @param text_size Size of text. Passed to the size argument of the geom_text
#' function. Default 4.
#' @return A ggplot object of genomic view
#' @examples
#' gtf <- system.file("extdata", "GRCm38_MT.gtf", package = "scruff")
#' g <- gview(gtf, chr = "MT")
#' g
#' @import rtracklayer
#' @export
gview <- function(gtfFile,
chr = 1,
start = 1,
end = max(data.table::as.data.table(
rtracklayer::import(gtfFile))[seqnames == chr, end]),
rect_width = 0.3,
line_width = 0.5,
arrow_segments = 10,
arrow_width = 30,
arrow_length = 0.08,
arrow_type = "open",
text_size = 4) {
.getLevel <- function(txdt) {
txdt <- txdt[order(start, end), ]
step <- 1
while (any(txdt[, set != 1])) {
x1 <- -1
for (i in seq_len(nrow(txdt))) {
if (txdt[i, set == 0 & start > x1]) {
txdt[i, level := step]
txdt[i, set := 1]
x1 <- txdt[i, end]
}
}
step <- step + 1
}
return(txdt)
}
.getTxdt <- function(dt) {
transcripts <- dt[, unique(transcript_id)]
txdt <- data.table::data.table()
for (i in transcripts) {
exdt <- dt[transcript_id == i, ]
txdt <- rbind(txdt,
data.table::data.table(
start = exdt[, min(start)],
end = exdt[, max(end)],
transcript_id = i,
transcript_name = exdt[, unique(transcript_name)],
gene_id = exdt[, unique(gene_id)],
gene_name = exdt[, unique(gene_name)],
strand = exdt[, unique(strand)]))
}
txdt[, set := 0]
txdt <- .getLevel(txdt)
}
.transRect <- function(dt, txdt) {
rdt <- data.table::data.table()
transcripts <- dt[, unique(transcript_id)]
for (tx in transcripts) {
dt[transcript_id == tx,
level := txdt[transcript_id == tx, level]]
}
exons <- dt[type == "exon", ]
for (i in seq_len(nrow(exons))) {
x1 <- exons[i, start]
x2 <- exons[i, end]
y1 <- exons[i, level] - rect_width
y2 <- exons[i, level] + rect_width
rdt <- rbind(rdt,
data.table::data.table(x1 = x1,
x2 = x2,
y1 = y1,
y2 = y2,
exon_number =
exons[i, exon_number],
transcript_id =
exons[i, transcript_id],
gene_id = exons[i, gene_id],
gene_name =
exons[i, gene_name]),
fill = TRUE)
}
return(rdt)
}
.transArrow <- function(dt) {
adt <- data.table::data.table()
for (i in seq_len(nrow(dt))) {
mi <- dt[i, start]
ma <- dt[i, end]
if (dt[i, strand] == "+") {
x1 <- mi + (((ma - mi) / arrow_segments) *
seq(0, arrow_segments - 1))
x2 <- ma - (((ma - mi) / arrow_segments) *
seq(arrow_segments - 1, 0))
} else if (dt[i, strand] == "-") {
x1 <- ma + (((mi - ma) / arrow_segments) *
seq(0, arrow_segments - 1))
x2 <- mi - (((mi - ma) / arrow_segments) *
seq(arrow_segments - 1, 0))
}
y1 <- rep(dt[i, level], arrow_segments)
y2 <- y1
adt <- rbind(adt,
data.table::data.table(
x1 = x1,
x2 = x2,
y1 = y1,
y2 = y2,
transcript_id = rep(dt[i, transcript_id],
arrow_segments),
transcript_name = rep(dt[i, transcript_name],
arrow_segments),
gene_id = rep(dt[i, gene_id],
arrow_segments),
gene_name = rep(dt[i, gene_name],
arrow_segments)))
}
return(adt)
}
.transText <- function(dt) {
tdt <- data.table::data.table()
for (i in seq_len(nrow(dt))) {
mi <- dt[i, start]
ma <- dt[i, end]
x <- (ma + mi) / 2
y <- dt[i, level] + 0.4
tdt <- rbind(tdt,
data.table::data.table(
x = x,
y = y,
transcript_name = dt[i, transcript_name]))
}
return(tdt)
}
# convert to data.table
gtfDt <- data.table::as.data.table(
rtracklayer::import(gtfFile))[type != "gene", c("seqnames",
"type",
"start",
"end",
"strand",
"gene_biotype",
"gene_name",
"exon_number",
"gene_id",
"transcript_name",
"transcript_id")]
# use new variables to avoid ambiguity
begin <- start
ed <- end
# subset features
gtfDt <- gtfDt[end >= begin & start <= ed & seqnames == chr, ]
# aggregate transcripts
txdt <- .getTxdt(gtfDt)
# get tables for plotting
rectdt <- .transRect(gtfDt, txdt)
arrowdt <- .transArrow(txdt)
textdt <- .transText(txdt)
# plot
g <- ggplot2::ggplot() +
ggplot2::geom_rect(data = rectdt,
mapping = ggplot2::aes(xmin = x1,
xmax = x2,
ymin = y1,
ymax = y2)) +
ggplot2::geom_segment(data = arrowdt,
mapping = ggplot2::aes(x = x1,
y = y1,
xend = x2,
yend = y2),
size = line_width,
arrow = ggplot2::arrow(angle = arrow_width,
length = ggplot2::unit(
arrow_length,
"inches"),
type = arrow_type)) +
ggplot2::geom_text(data = textdt,
mapping = ggplot2::aes(x = x,
y = y,
label = transcript_name),
size = text_size) +
.themePublication() +
ggplot2::theme(axis.title.y = ggplot2::element_blank(),
axis.text.y = ggplot2::element_blank(),
axis.ticks.y = ggplot2::element_blank(),
axis.line.y = ggplot2::element_blank()) +
ggplot2::xlab(paste0("Chr", chr))
return(g)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.