Nothing
#' Plot of interaction of expression of single cells in bivariate hexagon cells.
#'
#' @param sce A \code{\link[SingleCellExperiment]{SingleCellExperiment}}
#' or \code{\link[Seurat]{Seurat-class}} object.
#' @param mod A vector of strings referring to the names of the modularities.
#' For \code{\link[SingleCellExperiment]{SingleCellExperiment}} use "RNA" to
#' access the RNA expression data stored as the main experiment type.
#' @param type A vector of strings referring to the types of assays in the
#' \code{\link[SingleCellExperiment]{SingleCellExperiment}} or the types of
#' transformation in \code{\link[Seurat]{Seurat-class}} object.
#' @param feature A vector of strings referring to the names of one features in
#' the same order as the vector of modularities.
#' @param interact A string specifying how interaction between features is
#' calculated. Possible interaction measures are
#' \code{corr_spearman} and \code{mi} (see details).
#' @param title A string containing the title of the plot.
#' @param xlab A string containing the title of the x axis.
#' @param ylab A string containing the title of the y axis.
#'
#' @details This function plots the interaction between any features in the
#' hexagon cell representation calculated with \code{\link{make_hexbin}}. The
#' interaction between the chosen features is calculated by one of two
#' measurers \code{corr_spearman}, \code{ratio} and \code{mi}:
#'
#' \describe{
#' \item{\code{mi}}{Returns the mutual information coefficient.}
#' \item{\code{corr_spearman}}{Returns the Spearman correlation.}
#' \item{\code{fc}}{Return the log fold change between the features.}
#' }
#'
#' Note that \code{fc} should be applied to log normalized values.
#'
#' @return A \code{\link{ggplot2}{ggplot}} object.
#' @import Seurat
#' @import SingleCellExperiment
#' @importFrom methods slotNames
#' @import ggplot2
#' @importFrom dplyr as_tibble
#' @export
#'
#' @examples
#' # For Seurat object
#' library(Seurat)
#' data("pbmc_small")
#' pbmc_small <- make_hexbin(pbmc_small, 10, dimension_reduction = "PCA")
#' protein <- matrix(rnorm(10 * ncol(pbmc_small)), ncol = ncol(pbmc_small))
#' rownames(protein) <- paste0("A", seq(1, 10, 1))
#' colnames(protein) <- colnames(pbmc_small)
#' pbmc_small[["ADT"]] <- CreateAssayObject(counts = protein)
#' plot_hexbin_interact(pbmc_small, type=c("counts", "counts"),
#' mod=c("RNA", "ADT"), feature=c("CD7", "A1"), interact="mi")
plot_hexbin_interact <- function(sce,
mod,
type,
feature,
interact,
title=NULL,
xlab=NULL,
ylab=NULL) {
if(length(mod)!=length(feature)|length(feature)!=length(type)){
stop("Specify the same number of modularities, types and features.")
}
out <- .extract_hexbin(sce)
cID <- .extract_cID(sce)
if(is.null(out)){
stop("Compute hexbin representation before plotting.")
}
first_x <- .prepare_data_feature(sce, mod[1], type[1], feature[1])
second_x <- .prepare_data_feature(sce, mod[2], type[2], feature[2])
.plot_hexbin_interact_helper(first_x, second_x, out, cID, interact,
feature, title, xlab, ylab)
}
.plot_hexbin_interact_helper <- function(first_x, second_x, out, cID, interact,
feature, title, xlab, ylab) {
hh <- .interact_hexbin_function(first_x, second_x, interact, cID)
out <- as_tibble(out)
if(any(grepl("^[[:digit:]]", feature))){
feature <- paste0("F_", feature)
}
feature <- gsub("-", "_", feature)
col_hh <- paste0(interact, "_", feature[1], "_", feature[2])
func1 <- paste0("out$", col_hh, " <- hh")
eval(parse(text=func1))
.plot_hexbin(out, colour_by=col_hh,
title=title, xlab=xlab, ylab=ylab)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.