Nothing
#' Perform t-SNE on cell-level data
#'
#' Perform t-stochastic neighbour embedding (t-SNE) for the cells, based on the data in a SingleCellExperiment object.
#'
#' @param x For \code{calculateTSNE}, a numeric matrix of log-expression values where rows are features and columns are cells.
#' Alternatively, a \linkS4class{SummarizedExperiment} or \linkS4class{SingleCellExperiment} containing such a matrix.
#'
#' For \code{runTSNE}, a \linkS4class{SingleCellExperiment} object.
#' @param ncomponents Numeric scalar indicating the number of t-SNE dimensions to obtain.
#' @inheritParams runPCA
#' @param normalize Logical scalar indicating if input values should be scaled for numerical precision, see \code{\link[Rtsne]{normalize_input}}.
#' @param perplexity Numeric scalar defining the perplexity parameter, see \code{?\link[Rtsne]{Rtsne}} for more details.
#' @param theta Numeric scalar specifying the approximation accuracy of the Barnes-Hut algorithm, see \code{\link[Rtsne]{Rtsne}} for details.
#' @param ... For the \code{calculateTSNE} generic, additional arguments to pass to specific methods.
#' For the ANY method, additional arguments to pass to \code{\link[Rtsne]{Rtsne}}.
#' For the SummarizedExperiment and SingleCellExperiment methods, additional arguments to pass to the ANY method.
#'
#' For \code{runTSNE}, additional arguments to pass to \code{calculateTSNE}.
#' @param num_threads Integer scalar specifying the number of threads to use in \code{\link[Rtsne]{Rtsne}}.
#' If \code{NULL} and \code{BPPARAM} is a \linkS4class{MulticoreParam}, it is set to the number of workers in \code{BPPARAM};
#' otherwise, the \code{\link[Rtsne]{Rtsne}} defaults are used.
#' @param external_neighbors Logical scalar indicating whether a nearest neighbors search should be computed externally with \code{\link{findKNN}}.
#' @param BNPARAM A \linkS4class{BiocNeighborParam} object specifying the neighbor search algorithm to use when \code{external_neighbors=TRUE}.
#' @param BPPARAM A \linkS4class{BiocParallelParam} object specifying how the neighbor search should be parallelized when \code{external_neighbors=TRUE}.
#' @param pca Logical scalar indicating whether a PCA step should be performed inside \code{\link[Rtsne]{Rtsne}}.
#'
#' @inheritSection calculatePCA Feature selection
#' @inheritSection calculatePCA Using reduced dimensions
#' @inheritSection calculatePCA Using alternative Experiments
#'
#' @return
#' For \code{calculateTSNE}, a numeric matrix is returned containing the t-SNE coordinates for each cell (row) and dimension (column).
#'
#' For \code{runTSNE}, a modified \code{x} is returned that contains the t-SNE coordinates in \code{\link{reducedDim}(x, name)}.
#'
#' @details
#' The function \code{\link[Rtsne]{Rtsne}} is used internally to compute the t-SNE.
#' Note that the algorithm is not deterministic, so different runs of the function will produce differing results.
#' Users are advised to test multiple random seeds, and then use \code{\link{set.seed}} to set a random seed for replicable results.
#'
#' The value of the \code{perplexity} parameter can have a large effect on the results.
#' By default, the function will set a \dQuote{reasonable} perplexity that scales with the number of cells in \code{x}.
#' (Specifically, it is the number of cells divided by 5, capped at a maximum of 50.)
#' However, it is often worthwhile to manually try multiple values to ensure that the conclusions are robust.
#'
#' If \code{external_neighbors=TRUE}, the nearest neighbor search step will use a different algorithm to that in the \code{\link[Rtsne]{Rtsne}} function.
#' This can be parallelized or approximate to achieve greater speed for large data sets.
#' The neighbor search results are then used for t-SNE via the \code{\link[Rtsne]{Rtsne_neighbors}} function.
#'
#' If \code{dimred} is specified, the PCA step of the \code{Rtsne} function is automatically turned off by default.
#' This presumes that the existing dimensionality reduction is sufficient such that an additional PCA is not required.
#'
#' @references
#' van der Maaten LJP, Hinton GE (2008).
#' Visualizing High-Dimensional Data Using t-SNE.
#' \emph{J. Mach. Learn. Res.} 9, 2579-2605.
#'
#' @name runTSNE
#' @seealso
#' \code{\link[Rtsne]{Rtsne}}, for the underlying calculations.
#'
#' \code{\link{plotTSNE}}, to quickly visualize the results.
#'
#' @author Aaron Lun, based on code by Davis McCarthy
#'
#' @examples
#' example_sce <- mockSCE()
#' example_sce <- logNormCounts(example_sce)
#'
#' example_sce <- runTSNE(example_sce)
#' reducedDimNames(example_sce)
#' head(reducedDim(example_sce))
NULL
#' @importFrom BiocNeighbors KmknnParam findKNN
#' @importFrom BiocParallel SerialParam
.calculate_tsne <- function(x, ncomponents = 2, ntop = 500,
subset_row = NULL, scale=FALSE, transposed=FALSE,
perplexity=NULL, normalize = TRUE, theta = 0.5,
num_threads=NULL, ...,
external_neighbors=FALSE, BNPARAM = KmknnParam(), BPPARAM = SerialParam())
{
if (!transposed) {
x <- .get_mat_for_reddim(x, subset_row=subset_row, ntop=ntop, scale=scale)
}
x <- as.matrix(x)
if (is.null(perplexity)) {
perplexity <- min(50, floor(nrow(x) / 5))
}
args <- list(perplexity=perplexity, dims=ncomponents, theta=theta, ...)
num_threads <- .choose_nthreads(num_threads, BPPARAM)
if (!is.null(num_threads)) {
args$num_threads <- num_threads
}
if (!external_neighbors || theta==0) {
tsne_out <- do.call(Rtsne::Rtsne, c(list(x, check_duplicates = FALSE, normalize=normalize), args))
} else {
if (normalize) {
x <- Rtsne::normalize_input(x)
}
nn_out <- findKNN(x, k=floor(3*perplexity), BNPARAM=BNPARAM, BPPARAM=BPPARAM)
tsne_out <- do.call(Rtsne::Rtsne_neighbors, c(list(nn_out$index, nn_out$distance), args))
}
tsne_out$Y
}
#' @export
#' @rdname runTSNE
setMethod("calculateTSNE", "ANY", .calculate_tsne)
#' @export
#' @rdname runTSNE
#' @importFrom SummarizedExperiment assay
setMethod("calculateTSNE", "SummarizedExperiment", function(x, ..., exprs_values="logcounts") {
.calculate_tsne(assay(x, exprs_values), ...)
})
#' @export
#' @rdname runTSNE
setMethod("calculateTSNE", "SingleCellExperiment", function(x, ..., pca=is.null(dimred),
exprs_values="logcounts", dimred=NULL, n_dimred=NULL)
{
mat <- .get_mat_from_sce(x, exprs_values=exprs_values, dimred=dimred, n_dimred=n_dimred)
.calculate_tsne(mat, transposed=!is.null(dimred), pca=pca, ...)
})
#' @export
#' @rdname runTSNE
#' @importFrom SingleCellExperiment reducedDim<-
runTSNE <- function(x, ..., altexp=NULL, name="TSNE") {
if (!is.null(altexp)) {
y <- altExp(x, altexp)
} else {
y <- x
}
reducedDim(x, name) <- calculateTSNE(y, ...)
x
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.