Nothing
context("Test contrastive covariance matrices")
library(BiocParallel)
library(Matrix)
library(DelayedArray)
library(sparseMatrixStats)
library(DelayedMatrixStats)
dgC_back <- as(as.matrix(background_df), "dgCMatrix")
dgC_toy <- as(as.matrix(toy_df[, -31]), "dgCMatrix")
dm_back <- DelayedArray(background_df)
dm_toy <- DelayedArray(toy_df[, -31])
test_that("performs without issue when matrices are centered or scaled", {
# normal dataframes
expect_silent(contrastiveCov(toy_df[, -31], background_df, c(0, 1, 2),
center = TRUE, scale = TRUE
))
expect_silent(contrastiveCov(toy_df[, -31], background_df, c(0, 1, 2),
center = FALSE, scale = TRUE
))
expect_silent(contrastiveCov(toy_df[, -31], background_df, c(0, 1, 2),
center = TRUE, scale = FALSE
))
expect_silent(contrastiveCov(toy_df[, -31], background_df, c(0, 1, 2),
center = FALSE, scale = FALSE
))
# sparse matrices
expect_silent(contrastiveCov(dgC_toy, dgC_back, c(0, 1, 2),
center = TRUE, scale = TRUE
))
expect_silent(contrastiveCov(dgC_toy, dgC_back, c(0, 1, 2),
center = FALSE, scale = TRUE
))
expect_silent(contrastiveCov(dgC_toy, dgC_back, c(0, 1, 2),
center = TRUE, scale = FALSE
))
expect_silent(contrastiveCov(dgC_toy, dgC_back, c(0, 1, 2),
center = FALSE, scale = FALSE
))
# DelayedMatrices
expect_silent(contrastiveCov(dm_toy, dm_back, c(0, 1, 2),
center = TRUE, scale = TRUE
))
expect_silent(contrastiveCov(dm_toy, dm_back, c(0, 1, 2),
center = FALSE, scale = TRUE
))
expect_silent(contrastiveCov(dm_toy, dm_back, c(0, 1, 2),
center = TRUE, scale = FALSE
))
expect_silent(contrastiveCov(dm_toy, dm_back, c(0, 1, 2),
center = FALSE, scale = FALSE
))
})
test_that(paste(
"Number of contrastive covariance matrices matches number of",
"contrastive parameters"
), {
# normal df
expect_equal(length(contrastiveCov(toy_df[, -31], background_df, 100,
center = TRUE, scale = TRUE
)), 1)
expect_equal(length(contrastiveCov(toy_df[, -31],
background_df, c(0, 1, 2),
center = TRUE, scale = TRUE
)), 3)
# sparse matrices
expect_equal(length(contrastiveCov(dgC_toy, dgC_back, 100,
center = TRUE, scale = TRUE
)), 1)
expect_equal(length(contrastiveCov(dgC_toy, dgC_back, c(0, 1, 2),
center = TRUE, scale = TRUE
)), 3)
# DelayedMatrices
expect_equal(length(contrastiveCov(dm_toy, dm_back, 100,
center = TRUE, scale = TRUE
)), 1)
expect_equal(length(contrastiveCov(dm_toy, dm_back, c(0, 1, 2),
center = TRUE, scale = TRUE
)), 3)
})
test_that(paste(
"Number of columns of contrastive covariance matrix matches",
"the number of columns in the target and background data"
), {
# data frames
dim_cov <- ncol(contrastiveCov(toy_df[, -31], background_df, 4,
center = TRUE, scale = TRUE
)[[1]])
expect_equal(dim_cov, ncol(toy_df[, -31]))
expect_equal(dim_cov, ncol(background_df))
# sparse matrices
dim_cov <- ncol(contrastiveCov(dgC_toy, dgC_back, 4,
center = TRUE, scale = TRUE
)[[1]])
expect_equal(dim_cov, ncol(toy_df[, -31]))
expect_equal(dim_cov, ncol(background_df))
# DelayedMatrices
dim_cov <- ncol(contrastiveCov(dm_toy, dm_back, 4,
center = TRUE, scale = TRUE
)[[1]])
expect_equal(dim_cov, ncol(toy_df[, -31]))
expect_equal(dim_cov, ncol(background_df))
})
test_that(paste(
"Parallelized contrastive covariance routine matches",
"sequential analog"
), {
register(SerialParam())
# regular data frame
expect_equal(
contrastiveCov(toy_df[, -31],
background_df, c(0, 1, 2),
center = TRUE, scale = TRUE
),
bpContrastiveCov(toy_df[, -31],
background_df, c(0, 1, 2),
center = TRUE, scale = TRUE
)
)
# sparse matrix
expect_equal(
contrastiveCov(dgC_toy, dgC_back, c(0, 1, 2),
center = TRUE, scale = TRUE
),
bpContrastiveCov(dgC_toy, dgC_back, c(0, 1, 2),
center = TRUE, scale = TRUE
)
)
# DelayedMatrix
expect_equal(
contrastiveCov(dm_toy, dm_back, c(0, 1, 2),
center = TRUE, scale = TRUE
),
bpContrastiveCov(dm_toy, dm_back, c(0, 1, 2),
center = TRUE, scale = TRUE
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.