Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----eval = FALSE-------------------------------------------------------------
# if(!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install("rnaEditr")
## ---- message=FALSE-----------------------------------------------------------
library(rnaEditr)
## -----------------------------------------------------------------------------
data(rnaedit_df)
## -----------------------------------------------------------------------------
rnaedit_df[1:3, 1:3]
## -----------------------------------------------------------------------------
pheno_df <- readRDS(
system.file(
"extdata",
"pheno_df.RDS",
package = 'rnaEditr',
mustWork = TRUE
)
)
## -----------------------------------------------------------------------------
pheno_df[1:3, 1:3]
## -----------------------------------------------------------------------------
identical(pheno_df$sample, colnames(rnaedit_df))
## -----------------------------------------------------------------------------
rnaedit2_df <- CreateEditingTable(
rnaEditMatrix = rnaedit_df
)
## -----------------------------------------------------------------------------
table(pheno_df$sample_type)
## ---- results='hide'----------------------------------------------------------
tumor_single_df <- TestAssociations(
# an RNA editing dataframe with special class "rnaEdit_df" from function
# CreateEditingTable() if site-specific analysis, from function
# SummarizeAllRegions() if region-based analysis.
rnaEdit_df = rnaedit2_df,
# a phenotype dataset that must have variable "sample" whose values are a
# exact match to the colnames of "rnaEdit_df".
pheno_df = pheno_df,
# name of outcome variable in phenotype dataset "pheno_df" that you want to
# test.
responses_char = "sample_type",
# names of covariate variables in phenotype dataset "pheno_df" that you want
# to add into the model.
covariates_char = NULL,
# type of outcome variable that you input in argument "responses_char".
respType = "binary",
# order the final results by p-values or not.
orderByPval = TRUE
)
## -----------------------------------------------------------------------------
tumor_single_df[1:3, ]
## ----message=FALSE------------------------------------------------------------
tumor_annot_df <- AnnotateResults(
# the output dataset from function TestAssociations().
results_df = tumor_single_df,
# close-by regions, since this is site-specific analysis, set to NULL.
closeByRegions_gr = NULL,
# input regions, since this is site-specific analysis, set to NULL.
inputRegions_gr = NULL,
genome = "hg19",
# the type of analysis result from function TestAssociations(), since we are
# running site-specific analysis, set to "site-specific".
analysis = "site-specific"
)
## -----------------------------------------------------------------------------
tumor_annot_df[1:3, ]
## -----------------------------------------------------------------------------
allGenes_gr <- readRDS(
system.file(
"extdata",
"hg19_annoGene_gr.RDS",
package = 'rnaEditr',
mustWork = TRUE
)
)
## -----------------------------------------------------------------------------
allGenes_gr[1:3]
## -----------------------------------------------------------------------------
# If input is gene symbol
inputGenes_gr <- TransformToGR(
# input a character vector of gene symbols
genes_char = c("PHACTR4", "CCR5", "METTL7A"),
# the type of "gene_char". As we input gene symbols above, set to "symbol"
type = "symbol",
genome = "hg19"
)
## -----------------------------------------------------------------------------
inputGenes_gr
## -----------------------------------------------------------------------------
# If input is region ranges
inputRegions_gr <- TransformToGR(
# input a character vector of region ranges.
genes_char = c("chr22:18555686-18573797", "chr22:36883233-36908148"),
# the type of "gene_char". As we input region ranges above, set to "region".
type = "region",
genome = "hg19"
)
# Here we use AddMetaData() to find the gene symbols for inputRegions_gr.
AddMetaData(target_gr = inputRegions_gr, genome = "hg19")
## ---- results="hide"----------------------------------------------------------
closeByRegions_gr <- AllCloseByRegions(
# a GRanges object of genomic regions retrieved or created in section 4.1.
regions_gr = inputGenes_gr,
# an RNA editing matrix.
rnaEditMatrix = rnaedit_df,
maxGap = 50,
minSites = 3
)
## -----------------------------------------------------------------------------
closeByRegions_gr
## ---- results="hide"----------------------------------------------------------
closeByCoeditedRegions_gr <- AllCoeditedRegions(
# a GRanges object of close-by regions created by AllCloseByRegions().
regions_gr = closeByRegions_gr,
# an RNA editing matrix.
rnaEditMatrix = rnaedit_df,
# type of output data.
output = "GRanges",
rDropThresh_num = 0.4,
minPairCorr = 0.1,
minSites = 3,
# the method for computing correlations.
method = "spearman",
# When no co-edited regions are found in an input genomic region, you want to
# output the whole region (when set to TRUE) or NULL (when set to FALSE).
returnAllSites = FALSE
)
## -----------------------------------------------------------------------------
closeByCoeditedRegions_gr
## ----fig.height=6, fig.width=6------------------------------------------------
PlotEditingCorrelations(
region_gr = closeByCoeditedRegions_gr[1],
rnaEditMatrix = rnaedit_df
)
## ---- results='hide'----------------------------------------------------------
summarizedRegions_df <- SummarizeAllRegions(
# a GRanges object of close-by regions created by AllCoeditedRegions().
regions_gr = closeByCoeditedRegions_gr,
# an RNA editing matrix.
rnaEditMatrix = rnaedit_df,
# available methods: "MaxSites", "MeanSites", "MedianSites", and "PC1Sites".
selectMethod = MedianSites
)
## -----------------------------------------------------------------------------
summarizedRegions_df[1:3, 1:5]
## ---- results="hide"----------------------------------------------------------
tumor_region_df <- TestAssociations(
# an RNA editing dataframe with special class "rnaEdit_df" from function
# CreateEditingTable() if site-specific analysis, from function
# SummarizeAllRegions() if region-based analysis.
rnaEdit_df = summarizedRegions_df,
# a phenotype dataset that must have variable "sample" whose values are a
# exact match to the colnames of "rnaEdit_df".
pheno_df = pheno_df,
# name of outcome variable in phenotype dataset "pheno_df" that you want to
# test.
responses_char = "sample_type",
# names of covariate variables in phenotype dataset "pheno_df" that you want
# to add into the model.
covariates_char = NULL,
# type of outcome variable that you input in argument "responses_char".
respType = "binary",
# order the final results by p-values or not.
orderByPval = TRUE
)
## -----------------------------------------------------------------------------
tumor_region_df[1:3, ]
## -----------------------------------------------------------------------------
tumor_annot_df <- AnnotateResults(
# the output dataset from function TestAssociations().
results_df = tumor_region_df,
# close-by regions which is a output of AllCloseByRegions().
closeByRegions_gr = closeByRegions_gr,
# input regions, which are created in section 4.1.
inputRegions_gr = inputGenes_gr,
genome = "hg19",
# the type of analysis result from function TestAssociations(), since we are
# doing region-based analysis, use default here.
analysis = "region-based"
)
## -----------------------------------------------------------------------------
tumor_annot_df[1:3, ]
## ---- results="hide"----------------------------------------------------------
tumor_region_df <- TestAssociations(
# an RNA editing dataframe with special class "rnaEdit_df" from function
# CreateEditingTable() if site-specific analysis, from function
# SummarizeAllRegions() if region-based analysis.
rnaEdit_df = summarizedRegions_df,
# a phenotype dataset that must have variable "sample" whose values are a
# exact match to the colnames of "rnaEdit_df".
pheno_df = pheno_df,
# name of outcome variable in phenotype dataset "pheno_df" that you want to
# test.
responses_char = "age_at_diagnosis",
# names of covariate variables in phenotype dataset "pheno_df" that you want
# to add into the model.
covariates_char = NULL,
# type of outcome variable that you input in argument "responses_char".
respType = "continuous",
# order the final results by p-values or not.
orderByPval = TRUE
)
## -----------------------------------------------------------------------------
tumor_region_df[1:3, ]
## ---- results="hide"----------------------------------------------------------
tumor_region_df <- TestAssociations(
# an RNA editing dataframe with special class "rnaEdit_df" from function
# CreateEditingTable() if site-specific analysis, from function
# SummarizeAllRegions() if region-based analysis.
rnaEdit_df = summarizedRegions_df,
# a phenotype dataset that must have variable "sample" whose values are a
# exact match to the colnames of "rnaEdit_df".
pheno_df = pheno_df,
# name of outcome variable in phenotype dataset "pheno_df" that you want to
# test.
responses_char = c("OS.time", "OS"),
# names of covariate variables in phenotype dataset "pheno_df" that you want
# to add into the model.
covariates_char = NULL,
# type of outcome variable that you input in argument "responses_char".
respType = "survival",
# order the final results by p-values or not.
orderByPval = TRUE
)
## -----------------------------------------------------------------------------
tumor_region_df[1:3, ]
## ----size = 'tiny'------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.