Nothing
## ----setup, include=FALSE-----------------------------------------------------
BiocStyle::markdown()
options(width=80)
knitr::opts_chunk$set(echo = TRUE, warnings = FALSE, tidy = TRUE)
## ----github, eval=FALSE-------------------------------------------------------
# devtools::install_github("isglobal-brge/rexposome")
## ----library, message=FALSE---------------------------------------------------
library(rexposome)
## ----files_path---------------------------------------------------------------
path <- file.path(path.package("rexposome"), "extdata")
description <- file.path(path, "description.csv")
phenotype <- file.path(path, "phenotypes.csv")
exposures <- file.path(path, "exposures.csv")
## ----ags_read_exposome--------------------------------------------------------
args(readExposome)
## ----read_exposome------------------------------------------------------------
exp <- readExposome(
exposures = exposures,
description = description,
phenotype = phenotype,
exposures.samCol = "idnum",
description.expCol = "Exposure",
description.famCol = "Family",
phenotype.samCol = "idnum"
)
## ----show_es_1----------------------------------------------------------------
exp
## ----ags_load_exposome--------------------------------------------------------
args(loadExposome)
## ----read_csv_files-----------------------------------------------------------
dd <- read.csv(description, header=TRUE)
ee <- read.csv(exposures, header=TRUE)
pp <- read.csv(phenotype, header=TRUE)
## ----set_dd_rownames----------------------------------------------------------
rownames(dd) <- dd[, 2]
dd <- dd[ , -2]
## ----set_ee_rownames----------------------------------------------------------
rownames(ee) <- ee[ , 1]
ee <- ee[ , -1]
## ----set_pp, rownames---------------------------------------------------------
rownames(pp) <- pp[ , 1]
pp <- pp[ , -1]
## ----load_exposome------------------------------------------------------------
exp <- loadExposome(
exposures = ee,
description = dd,
phenotype = pp,
description.famCol = "Family"
)
## ----individuals_names--------------------------------------------------------
head(sampleNames(exp))
## ----exposures_names----------------------------------------------------------
head(exposureNames(exp))
## ----families_names-----------------------------------------------------------
familyNames(exp)
## ----phenotype_names----------------------------------------------------------
phenotypeNames(exp)
## ----feature------------------------------------------------------------------
head(fData(exp), n = 3)
## ----phenotype----------------------------------------------------------------
head(pData(exp), n = 3)
## ----exposures----------------------------------------------------------------
expos(exp)[1:10, c("Cotinine", "PM10V", "PM25", "X5cxMEPP")]
## ----misssing_data_table------------------------------------------------------
tableMissings(exp, set = "exposures", output = "n")
tableMissings(exp, set = "phenotypes", output = "n")
## ----missing_exposures_plot, fig.height=8-------------------------------------
plotMissings(exp, set = "exposures")
## ----normality----------------------------------------------------------------
nm <- normalityTest(exp)
table(nm$normality)
## ----no_normality-------------------------------------------------------------
nm$exposure[!nm$normality]
## ----histogram_cleaning, message=FALSE----------------------------------------
library(ggplot2)
plotHistogram(exp, select = "G_pesticides") +
ggtitle("Garden Pesticides")
## ----histogram_no_normal, message=FALSE, warning=FALSE------------------------
plotHistogram(exp, select = "BDE209") +
ggtitle("BDE209 - Histogram")
## ----histogram_trans, message=FALSE, warning=FALSE----------------------------
plotHistogram(exp, select = "BDE209", show.trans = TRUE)
## ----impute_hmisc-------------------------------------------------------------
exp <- imputation(exp)
## ----plot_all_exposures, fig.height=12, fig.width=8---------------------------
plotFamily(exp, family = "all")
## ----plot_phenols_sex---------------------------------------------------------
plotFamily(exp, family = "Phthalates", group = "sex")
## ----plot_phenols_sex_rhinitis------------------------------------------------
plotFamily(exp, family = "Phthalates", group = "rhinitis", group2 = "rhinitis")
## ----standardize, warning=FALSE-----------------------------------------------
exp_std <- standardize(exp, method = "normal")
exp_std
## ----pca----------------------------------------------------------------------
# FAMD
exp_pca <- pca(exp_std)
# PCA
exp_pca <- pca(exp_std, pca = TRUE)
## ----plot_pca_all-------------------------------------------------------------
plotPCA(exp_pca, set = "all")
## ----plot_pca_samples---------------------------------------------------------
plotPCA(exp_pca, set = "samples", phenotype = "sex")
## ----plot_pca_samples_3d------------------------------------------------------
plot3PCA(exp_pca, cmpX=1, cmpY=2, cmpZ=3, phenotype = "sex")
## ----correlation, warning=FALSE, message=FALSE--------------------------------
exp_cr <- correlation(exp, use = "pairwise.complete.obs", method.cor = "pearson")
## ----extract_correlation------------------------------------------------------
extract(exp_cr)[1:4, 1:4]
## ----correlation_circos, fig.width=8, fig.height=8----------------------------
plotCorrelation(exp_cr, type = "circos")
## ----correlation_matrix, fig.width=7, fig.height=7----------------------------
plotCorrelation(exp_cr, type = "matrix")
## ----clustering_args----------------------------------------------------------
args(clustering)
## ----hclust_function----------------------------------------------------------
hclust_data <- function(data, ...) {
hclust(d = dist(x = data), ...)
}
## ----hclus_k3-----------------------------------------------------------------
hclust_k3 <- function(result) {
cutree(result, k = 3)
}
## ----expo_clustering----------------------------------------------------------
exp_c <- clustering(exp, method = hclust_data, cmethod = hclust_k3)
exp_c
## ----plot_clustering, fig.width=12, fig.height=15-----------------------------
plotClassification(exp_c)
## ----classification_clustering------------------------------------------------
table(classification(exp_c))
## ----plot_pca_exp_cor, fig.width=7, fig.height=12, message=FALSE, warning=FALSE----
plotEXP(exp_pca) + theme(axis.text.y = element_text(size = 6.5)) + ylab("")
## ----plot_pca_phe_ass, fig.width=7, fig.height=4, message=FALSE, warning=FALSE----
plotPHE(exp_pca)
## ----exwas_flu, warning=FALSE, message=FALSE----------------------------------
fl_ew <- exwas(exp, formula = blood_pre~sex+age, family = "gaussian")
fl_ew
## ----exwas_wheezing, warning=FALSE, message=FALSE-----------------------------
we_ew <- exwas(exp, formula = wheezing~sex+age, family = "binomial")
we_ew
## ----exwas_extrat-------------------------------------------------------------
head(extract(fl_ew))
## ----exwas_plot, warning=FALSE, fig.width=10, fig.height=12, message=FALSE----
clr <- rainbow(length(familyNames(exp)))
names(clr) <- familyNames(exp)
plotExwas(fl_ew, we_ew, color = clr) +
ggtitle("Exposome Association Study - Univariate Approach")
## ----exwas_effect_plot, warning=FALSE, fig.width=8, fig.height=10, message=FALSE----
plotEffect(fl_ew)
## ----stratified_exwas---------------------------------------------------------
strat_variable <- "sex"
formula <- cbmi ~ 1
family <- "gaussian"
strat_ex <- lapply(levels(as.factor(pData(exp)[[strat_variable]])), function(i){
mask <- pData(exp)[[strat_variable]]==i
exwas_i <- rexposome::exwas(exp[,mask], formula = formula,
family = family, tef = FALSE)
exwas_i@formula <- update.formula(exwas_i@formula,
as.formula(paste0("~ . + strata(", strat_variable,
"_", gsub("[[:space:]]|-|+|(|)", "", i), ")")))
return(exwas_i)
})
## ----stratified_exwas_plot, fig.width=8, fig.height=10------------------------
do.call(plotExwas, strat_ex)
## ----inverse_exwas------------------------------------------------------------
inv_ex <- invExWAS(exp, formula = ~ flu + sex)
inv_ex
## ----inverse_exwas_extract----------------------------------------------------
head(extract(inv_ex))
## ----inveres_exwas_plot-------------------------------------------------------
clr <- rainbow(length(familyNames(exp)))
names(clr) <- familyNames(exp)
plotExwas(inv_ex, color = clr) + ggtitle("Inverse Exposome Association Study - Univariate Approach")
## ----enet, warning=FALSE------------------------------------------------------
bl_mew <- mexwas(exp_std, phenotype = "blood_pre", family = "gaussian")
we_mew <- mexwas(exp_std, phenotype = "wheezing", family = "binomial")
## ----plot_enet_heatmap, fig.width=10, fig.height=12---------------------------
plotExwas(bl_mew, we_mew) + ylab("") +
ggtitle("Exposome Association Study - Multivariate Approach")
## ----sessionInfo, echo=FALSE--------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.