Nothing
#' @describeIn ExposomeSet Performs an EXposome-Wide Association Study (modelling the exposures as response)
#' @param formula Formula, not including exposures, to be tested. No need to provide response (left term)
#' @param filter Expression to be used to filter \code{\link{ExposomeSet}}
#' @param tef If \code{TRUE} it computed the threshold for effective tests.
#' @param verbose If set to \code{TRUE} is shows messages on progression.
#' @param warnings If set to \code{TRUE} it prints the warning messsages.
setMethod(
f = "invExWAS",
signature = "ExposomeSet",
definition = function(object, formula, filter,
tef = TRUE, verbose = FALSE, warnings = TRUE){
dta <- cbind(expos(object), pData(object))
if(!missing(filter)) {
sel <- eval(substitute(filter), as.data.frame(dta))
dta <- dta[sel, ]
}
if(class(formula) == "character") {
formula <- formula(formula)
}
results <- as.data.frame(t(sapply(exposureNames(object), function(ex){
tryCatch({
if(verbose) {
message("Processing '", ex, "'.")
}
ff <- reformulate(attr(terms(formula), "term.labels"), response = ex)
typ <- class(dta[,ex])
if(typ == "factor"){
mod <- nnet::multinom(ff, data=dta, model = FALSE, trace = FALSE)
}
else {
mod <- lm(ff, data=dta, model = FALSE)
}
if(warnings & !is.null(mod$na.action)){
lost_rows <- length(mod$na.action)
warning(lost_rows, " rows removed when evaluating '", ex, "'")
}
mod0 <- update(mod, as.formula(paste("~ -", attr(terms(ff), "term.labels")[1])),
data=if(is.null(mod$na.action)){dta}else{dta[-mod$na.action,]})
pp <- anova(mod0, mod)
pvalue <- pp[2, ncol(pp)]
effect <- c(coef(mod)[2],
confint.default(mod)[2,])
return(c(effect, pvalue))
}, error = function(e) {
if(warnings) {
message("[warning]: ", e)
}
})
})))
colnames(results) <- c("effect", "2.5","97.5", "pvalue")
if(tef) {
cormat <- extract(correlation(object,
use="pairwise.complete.obs", method.cor = "pearson"))
M <- ncol(cormat)
lambdas <- base::eigen(cormat)$values
Vobs <- sum(((lambdas - 1)^2)) / (M - 1)
Meff <- M - sum((lambdas>1)*(lambdas-1))
alpha_corrected <- 1 - (1 - 0.05)^(1 / Meff)
} else {
alpha_corrected <- 0
}
new("ExWAS",
effective = alpha_corrected,
comparison = S4Vectors::DataFrame(results),
description = S4Vectors::DataFrame(pData(featureData(object))),
formula = reformulate(attr(terms(formula), "term.labels"), response = "expositions")
)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.