Nothing
# library(Biobase)
library(rMAT)
pwd<-"./"
####################################################
#See vignette on how to get data files from Web site.
####################################################
setwd("/Users/gottarr/rglab/Papers/rMAT-paper2/") # Set wroking directory where you are your CEL and bpmap files
bpmapFile<-paste(pwd,"P1_CHIP_A.Anti-Sense.hs.NCBIv35.NR.bpmap",sep="")
arrayFile<-paste(pwd,c("MCF_ER_A1.CEL","MCF_ER_A3.CEL","MCF_ER_A4.CEL","MCF_INP_A1.CEL","MCF_INP_A3.CEL","MCF_INP_A4.CEL"),sep="")
arrayFile<-paste(pwd,c("MCF_ER_A1.CEL"),sep="")
arrayFile<-paste(pwd,c("MCF_ER_A1.CEL","MCF_ER_A3.CEL"),sep="")
# Show the all the different sequences
# ReadBPMAPAllSeqHeader(bpmapFile)
# create a tiling Set from the corresponding data
# This will only grep the sequences with Sc
ScSet<-BPMAPCelParser(bpmapFile, arrayFile, verbose=TRUE,groupName="",seqName="chr21")
# show the object
show(ScSet)
# summarize its content
summary(ScSet)
# Perform the MAT normalization
ScSetNorm<-NormalizeProbes(ScSet, method="MAT",robust=TRUE, all=FALSE, standard=TRUE, verbose=TRUE)
yN<-exprs(ScSetNorm)
y<-exprs(ScSet)
diag(cor(yN,y))
ScSetNorm<-NormalizeProbes(ScSet, method="MAT",robust=FALSE, all=FALSE, standard=TRUE, verbose=TRUE)
yN<-exprs(ScSetNorm)
y<-exprs(ScSet)
diag(cor(yN,y))
ScSetNorm<-NormalizeProbes(ScSet, method="PairBinned",robust=TRUE, all=FALSE, standard=TRUE, verbose=TRUE)
yN<-exprs(ScSetNorm)
y<-exprs(ScSet)
diag(cor(yN,y))
plot(y[,1],pch=".")
# show the object
show(ScSetNorm)
# summarize its content
summary(ScSetNorm)
# Compute the MAT scores and get the enriched regions
# Note that we only need to specify a unique name identifier for the control, here it is SUP
# So it's always a good idea to use unique identifiers for control and treatment
#ScScore<-MATScore(ScSetNorm, cName=NULL, dMax=600, nProbesMin=8, dMerge=300, method="score", threshold=5, verbose=TRUE, bedName="MyBedFile")
RD<-computeMATScore(ScSetNorm,cName="MCF_INP", dMax=600, verbose=TRUE)
Enrich<-callEnrichedRegions(RD,dMax=600, dMerge=300, nProbesMin=8, method="pValue", threshold=1e-5, verbose=FALSE)
# Show the object
show(ScScore)
# summarize its content
summary(ScScore)
# You have 2 possibilities to visualize data
############################################
# 1) rtracklayer package
##########################################
library(rtracklayer)
#Export to BED format :
export(Enrich,"EnrichedData.bed")
genome(Enrich)<-"sacCer2"
names(Enrich)<-"chrI"
#Viewing the targets
session<- browserSession("UCSC")
track(session,"target") <- Enrich
#Get the first feature
subEnrich<-Enrich[2,]
#View with GenomeBrowser
view<- browserView(session,range(subEnrich) * -2)
#############################################
# 2) This is using the GenomeGraphs package
##########################################
library(GenomeGraphs)
mart<-useMart("ensembl", dataset = "hsapiens_gene_ensembl")
genomeAxis<-makeGenomeAxis(add53 = TRUE,add35 = TRUE)
# Here I only look at chr1 between 1 and 50000
minbase<-15400000
maxbase<-15600000
minbase<-14100000
maxbase<-15000000
genesplus<-makeGeneRegion(start = minbase, end = maxbase, strand = "+", chromosome = 21, biomart = mart)
genesmin<-makeGeneRegion(start = minbase, end = maxbase, strand = "-", chromosome = "21", biomart = mart)
# Here I create a Generic array for chr1 ony
RD1<-RD[space(RD)=="chr21",]
Enrich1<-Enrich[space(Enrich)=="chr21",]
MatScore<-makeGenericArray(intensity=as.matrix(score(RD1)), probeStart=start(RD1), dp=DisplayPars(size=1, color="black", type="l"))
# Here I create overlays to look at the enriched regions (above>threshold)
rectList<- makeRectangleOverlay(start = start(Enrich1), end = end(Enrich1), region = c(1, 4), dp = DisplayPars(color = "green", alpha = 0.1))
gdPlot(list("score" = MatScore, "Gene +" = genesplus, Position = genomeAxis, "Gene -" = genesmin), minBase = minbase, maxBase = maxbase, labelCex = 1,overlays=rectList)
gdPlot(list("score" = MatScore, Position = genomeAxis), minBase = minbase, maxBase = maxbase, labelCex = 1)
### My test
# library(Biobase)
library(rMAT)
bpmapFile<-"P1_CHIP_A.Anti-Sense.hs.NCBIv35.NR.bpmap"
arrayFile<-c("MCF_ER_A1.CEL","MCF_ER_A3.CEL","MCF_ER_A4.CEL","MCF_INP_A1.CEL","MCF_INP_A3.CEL","MCF_INP_A4.CEL")
# Show the all the different sequences
ReadBPMAPAllSeqHeader(bpmapFile)
# create a tiling Set from the corresponding data
# This will only grep the sequences with Sc
ERset<-BPMAPCelParser(bpmapFile, arrayFile, seqName="chr21")
# Perform the MAT normalization
# ERsetNorm1<-NormalizeProbes(ERset, method="MAT",robust=TRUE)
ERsetNorm<-NormalizeProbes(ERset, method="PairBinned",robust=TRUE)
# Compute MAT scores
ERscore<-computeMATScore(ERsetNorm,cName="INP")
ERscore
# Export a wig file
export(ERscore,con="ERscore.wig")
library(rtracklayer)
genome(Enrich)<-"sacCer2"
names(Enrich)<-"chrI"
#Viewing the targets
session<- browserSession("UCSC")
track(session,"target") <- Enrich
#Get the first feature
subEnrich<-Enrich[2,]
#View with GenomeBrowser
view<- browserView(session,range(subEnrich) * -2)
library(GenomeGraphs)
mart<-useMart("ensembl", dataset = "scerevisiae_gene_ensembl")
genomeAxis<-makeGenomeAxis(add53 = TRUE,add35 = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.