Nothing
## ---- eval=FALSE--------------------------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("progeny")
#
# ## To install the new version until it is submitted to Bioconductor use:
# devtools::install_github("saezlab/progeny")
## ---- message=FALSE-----------------------------------------------------------
library(progeny)
library(dplyr)
library(Seurat)
library(ggplot2)
library(tidyr)
library(readr)
library(pheatmap)
library(tibble)
## ---- eval=FALSE--------------------------------------------------------------
# ## Load the PBMC dataset
# pbmc.data <-
# Read10X(data.dir = "../data/pbmc3k/filtered_gene_bc_matrices/hg19/")
# ## Initialize the Seurat object with the raw (non-normalized data).
# pbmc <-
# CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3,
# min.features = 200)
## ---- eval=TRUE , include=FALSE-----------------------------------------------
pbmc <-
readRDS(url("https://github.com/alberto-valdeolivas/ProgenyVignette/raw/master/SeuratObject.rds"))
## ---- message=FALSE-----------------------------------------------------------
## Identification of mithocondrial genes
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
## Filtering cells following standard QC criteria.
pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 &
percent.mt < 5)
## Normalizing the data
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize",
scale.factor = 10000)
pbmc <- NormalizeData(pbmc)
## Identify the 2000 most highly variable genes
pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)
## In addition we scale the data
all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
## ---- message=FALSE, warning=FALSE--------------------------------------------
pbmc <-
RunPCA(pbmc, features = VariableFeatures(object = pbmc), verbose = FALSE)
pbmc <- FindNeighbors(pbmc, dims = 1:10, verbose = FALSE)
pbmc <- FindClusters(pbmc, resolution = 0.5, verbose = FALSE)
pbmc <- RunUMAP(pbmc, dims = 1:10, umap.method = 'uwot', metric='cosine')
## -----------------------------------------------------------------------------
DimPlot(pbmc, reduction = "umap")
## ---- message = FALSE---------------------------------------------------------
## Finding differentially expressed features (cluster biomarkers)
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25,
logfc.threshold = 0.25, verbose = FALSE)
## Assigning cell type identity to clusters
new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B", "CD8 T",
"FCGR3A+ Mono", "NK", "DC", "Platelet")
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
## We create a data frame with the specification of the cells that belong to
## each cluster to match with the Progeny scores.
CellsClusters <- data.frame(Cell = names(Idents(pbmc)),
CellType = as.character(Idents(pbmc)),
stringsAsFactors = FALSE)
## ---- message = FALSE, warning = FALSE----------------------------------------
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
## ---- message = FALSE---------------------------------------------------------
## We compute the Progeny activity scores and add them to our Seurat object
## as a new assay called Progeny.
pbmc <- progeny(pbmc, scale=FALSE, organism="Human", top=500, perm=1,
return_assay = TRUE)
## We can now directly apply Seurat functions in our Progeny scores.
## For instance, we scale the pathway activity scores.
pbmc <- Seurat::ScaleData(pbmc, assay = "progeny")
## We transform Progeny scores into a data frame to better handling the results
progeny_scores_df <-
as.data.frame(t(GetAssayData(pbmc, slot = "scale.data",
assay = "progeny"))) %>%
rownames_to_column("Cell") %>%
gather(Pathway, Activity, -Cell)
## We match Progeny scores with the cell clusters.
progeny_scores_df <- inner_join(progeny_scores_df, CellsClusters)
## We summarize the Progeny scores by cellpopulation
summarized_progeny_scores <- progeny_scores_df %>%
group_by(Pathway, CellType) %>%
summarise(avg = mean(Activity), std = sd(Activity))
## ---- message=FALSE-----------------------------------------------------------
## We prepare the data for the plot
summarized_progeny_scores_df <- summarized_progeny_scores %>%
dplyr::select(-std) %>%
spread(Pathway, avg) %>%
data.frame(row.names = 1, check.names = FALSE, stringsAsFactors = FALSE)
## -----------------------------------------------------------------------------
paletteLength = 100
myColor = colorRampPalette(c("Darkblue", "white","red"))(paletteLength)
progenyBreaks = c(seq(min(summarized_progeny_scores_df), 0,
length.out=ceiling(paletteLength/2) + 1),
seq(max(summarized_progeny_scores_df)/paletteLength,
max(summarized_progeny_scores_df),
length.out=floor(paletteLength/2)))
progeny_hmap = pheatmap(t(summarized_progeny_scores_df[,-1]),fontsize=14,
fontsize_row = 10,
color=myColor, breaks = progenyBreaks,
main = "PROGENy (500)", angle_col = 45,
treeheight_col = 0, border_color = NA)
## ----sessionInfo, echo=FALSE--------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.