Nothing
library(preprocessCore)
values <- rnorm(100)
group.labels <- sample(0:4,replace=TRUE, 100)
results <- double(10000)
ngroups <- 2
for (i in 1:10000){
values <- rnorm(100,sd=1)
values <- values/sd(values)
group.labels <- sample(0:(ngroups-1),replace=TRUE, 100)
blah <- .C("R_split_test",as.double(values), as.integer(100), as.integer(ngroups), as.integer(group.labels),double(1))
results[i] <- blah[[5]]
}
plot(sort(results),qchisq(0:9999/10000,ngroups-1))
lm(qchisq(0:9999/10000,ngroups-1) ~ sort(results))
boxplot(values ~ group.labels,ylim=c(-2,2))
sc <- median(abs(resid(lm(values ~ 1))))/0.6745
sum((resid(lm(values ~ 1))/sc)^2)/2
sum((resid(lm(values ~ as.factor(group.labels)))/sc)^2)/2
values <- rnorm(100)
group.labels <- sample(0:4,replace=TRUE, 100)
values[group.labels == 1] <- values[group.labels == 1] + 0.4
blah <- .C("R_split_test",as.double(values), as.integer(100), as.integer(5), as.integer(group.labels),double(1))
boxplot(values ~ group.labels,ylim=c(-2,2))
library(preprocessCore)
.C("R_test_get_design_matrix",as.integer(4),as.integer(5))
chips <- as.factor(rep(c(1,2,3,4,5,6),c(5,5,5,5,5,5)))
probes <- rep(c(1,3,4,5,6),6)
probes[c(1,6,11)] <- 2
##probes[24 + c(8,16,24)] <- 10
probes <- as.factor(probes)
model.matrix(~ -1 + probes)%*%contr.sum(6)
probes <- rep(c(1,3,4,5,6),6)
probes[c(1,6,11)] <- 2
probes[c(20,25,30)] <- 7
probes <- as.factor(probes)
model.matrix(~ -1 + probes)%*%contr.sum(7)
probes <- rep(c(1,3,4,5,6),6)
probes[c(1,6,11)] <- 2
probes[c(5,10,15)] <- 7
probes <- as.factor(probes)
model.matrix(~ -1 + probes)%*%contr.sum(7)
probes <- rep(c(1,3,4,5,6),6)
probes[c(1,6,11)] <- 2
probes[1+c(1,6,11)] <- 8
probes[2+c(1,6,11)] <- 9
probes[3+c(1,6,11)] <- 10
probes[c(5,10,15)] <- 7
probes <- as.factor(probes)
model.matrix(~ -1 + probes)%*%contr.sum(10)
true.probes <- c(4,3,2,1,-1,-2,-3,-4)
true.chips <- c(8,9,10,11,12,13)
y <- outer(true.probes,true.chips,"+")
estimate.coefficients <- function(y){
colmean <- apply(y,2,mean)
y <- sweep(y,2,FUN="-",colmean)
rowmean <- apply(y,1,mean)
y <- sweep(y,1,FUN="-",rowmean)
list(y,colmean,rowmean)
}
estimate.coefficients(y)
y <- outer(true.probes,true.chips,"+")
estimate.coefficients(y)
y2 <- sweep(y,2,FUN="-",apply(y,2,mean))
c(3.875, 2.875, 1.875, 0.875,
-1.125, -2.125, -3.125, -4, -2.25)
cp <- rep(c(1,2,3,4,5,6),rep(8,6))
pr <- rep(c(1,2,3,4,5,6,7,8),6)
pr[c(32,40,48)] <- 9
true.probes <- c(4,3,2,1,-1,-2,-3,-4)
true.chips <- c(8,9,10,11,12,10)
y <- outer(true.probes,true.chips,"+") + rnorm(48,0,0.1)
y[8,4:6] <- c(11,12,10)+2 + rnorm(3,0,0.1)
lm(as.vector(y) ~ -1 + as.factor(cp) + C(as.factor(pr),"contr.sum"))
matplot(y,type="l")
matplot(matrix(fitted( lm(as.vector(y) ~ -1 + as.factor(cp) +
C(as.factor(pr),"contr.sum"))),ncol=6),type="l")
library(preprocessCore)
true.probes <- c(4,3,2,1,-1,-2,-3,-4)
true.chips <- c(8,9,10,11,12,10)
y <- outer(true.probes,true.chips,"+") + rnorm(48,0,0.25)
y[8,4:6] <- c(11,12,10)+ 2.5 + rnorm(3,0,0.25)
y[5,4:6] <- c(11,12,10)+-2.5 + rnorm(3,0,0.25)
###.C("plmd_fit_R", as.double(y), as.integer(8), as.integer(6),
### as.integer(2), as.integer(c(1,1,1,2,2,2) - 1),
### double(6 +2*8),
### double(48),
### double(48))
###matplot(matrix(.C("plmd_fit_R", as.double(y), as.integer(8), as.integer(6),
### as.integer(2), as.integer(c(1,1,1,2,2,2) - 1),
### double(6 +2*8),
### double(48),
### double(48))[[7]],ncol=6))
###
##.Call("R_plmd_model",y,0,1.3345,as.integer(c(1,1,1,2,2,2) - 1),as.integer(2))
rcModelPLM(y)
rcModelPLMd(y,c(1,1,1,2,2,2))
###R_plmd_model(SEXP Y, SEXP PsiCode, SEXP PsiK, SEXP Groups, SEXP Ngroups)
pr[seq(3,48,8)][1:3] <- 10
y[seq(3,48,8)][1:3] <- c(8,9,10) -3 + rnorm(3,0,0.1)
lm(as.vector(y) ~ -1 + as.factor(cp) + C(as.factor(pr),"contr.sum"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.