Nothing
### function to compute the matrix of mutual information (inspired from minet)
### returns a matrix containing the mutual information between all pairs of variables
## dataset: Matrix of continuous values (gene expressions for example); observations in rows, features in columns.
## estimator: type of correlation coefficient used to compute the mutual information
`.build2.mim` <-
function(dataset, estimator=c("pearson", "spearman", "kendall")) {
estimator <- match.arg(estimator)
if( estimator=="pearson" || estimator=="spearman" || estimator=="kendall") {
mim <- cor(dataset,method=estimator,use="complete.obs")^2
diag(mim) <- 0
maxi <- 0.999999
mim[which(mim>maxi)] <- maxi
mim <- -0.5*log(1-mim)
} else { stop("unknown estimator") }
mim[mim<0] <- 0
return(mim)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.