Nothing
"justPlier" <-
function(eset=ReadAffy(),replicate=1:length(eset),get.affinities=FALSE,normalize=FALSE,norm.type="together",augmentation=0.1,defaultaffinity=1.0,defaultconcentration=1.0,attenuation=0.005,seaconvergence=0.000001,seaiteration=3000,gmcutoff=0.15,probepenalty=0.001,concpenalty=0.000001,usemm=TRUE,usemodel=FALSE,fitaffinity=TRUE,plierconvergence=0.000001,plieriteration=3000,dropmax=3.0,lambdalimit=0.01,optimization=0) {
if(normalize) {
cat("Quantile normalizing...");
eset <- normalize.AffyBatch.quantiles(eset,norm.type);
cat("Done.\n");
}
else {
warning("##### normalise=FALSE: No normalization will be performed in plier");
}
pns <- probeNames(eset)
num_exp <- length(sampleNames(eset))
o <- order(pns)
pns <- pns[o]
if(missing(replicate)) { replicate <- 1:num_exp }
else { if(!is.numeric(replicate)) { stop("Parameter 'replicate' must be a vector of integers") } }
if(length(replicate)!=num_exp) { stop("Parameter 'replicate' should be the same length as the number of samples in 'eset'") }
pms <- as.double(pm(eset)[o,])
mms <- mm(eset)
if(!usemm) {
cat("usemm=FALSE: setting mms to 1.0\n")
mms <- rep(1.0,length(pms))
}
else { if(dim(mms)[1] == length(o)) {
mms <- as.double(mms[o,])
}
else {
cat("Warning: mms only contained dim",dim(mms),"mm probes!\n")
cat("Creating dummy mms..\n");
mms <- rep(1.0,length(pms))
}
}
num_probe <- length(pns)
r <- .C("an_experiment",as.logical(TRUE),as.double(augmentation), as.double(gmcutoff), as.double(probepenalty), as.double(concpenalty), as.double(defaultaffinity), as.double(defaultconcentration), as.double(attenuation), as.double(seaconvergence), as.integer(seaiteration), as.double(plierconvergence), as.integer(plieriteration), as.logical(usemm), as.logical(usemodel), as.logical(fitaffinity), as.double(dropmax), as.double(lambdalimit), as.integer(optimization), as.integer(num_exp), as.integer(num_probe), as.integer(replicate), pms, mms, as.character(pns), concentration=double(num_exp * length(unique(pns))), affinity=double(num_probe), error.code=integer(1),PACKAGE="plier")
x <- log2(t(matrix(r$concentration,nrow=num_exp)))
colnames(x) <- sampleNames(eset)
rownames(x) <- featureNames(eset)
res <- new("ExpressionSet",
exprs = x,
phenoData = phenoData(eset),
annotation = annotation(eset),
experimentData = experimentData(eset));
if(get.affinities) {
a <- (r$affinity)
names(a) <- probeNames(eset)
res@description@preprocessing$affinity=a;
}
return(res)
}
.testoneprobeset <- function() {
# here are the default test parameters
augmentation <- 0.1
defaultaffinity <- 1.0
defaultconcentration <- 1.0
attenuation <- 0.005
seaconvergence <- 0.000001
seaiteration <- 2000
gmcutoff <- 0.15
probepenalty <- 0.001
concpenalty <- 0.000001
usemm <- TRUE
usemodel <- FALSE
fitaffinity <- FALSE
plierconvergence <- 0.000001
plieriteration <- 3000
dropmax <- 3.0
lambdalimit <- 0.01
optimization <- 0
pm <- c(4071.0,3742.0,3517.0,4231.0,4037.0,3615.0,6374.0,5431.0,5102.0)
mm <- c(503.0,377.0,321.0,354.0,353.0,362.0,1693.0,1436.0,1640.0)
num_exp <- 3
num_probe <- 3
replicate <- 1:num_exp
r <- .C("one_probeset",as.logical(TRUE),as.double(augmentation), as.double(gmcutoff), as.double(probepenalty), as.double(concpenalty), as.double(defaultaffinity), as.double(defaultconcentration), as.double(attenuation), as.double(seaconvergence), as.integer(seaiteration), as.double(plierconvergence), as.integer(plieriteration), as.logical(usemm), as.logical(usemodel), as.logical(fitaffinity), as.double(dropmax), as.double(lambdalimit), as.integer(optimization), as.integer(num_exp), as.integer(num_probe), as.integer(replicate), as.double(pm), as.double(mm), concentration=double(num_exp), affinity=double(num_probe), error.code=integer(1),PACKAGE="plier")
print(r)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.