Nothing
#' Map indexes using Annotation DB
#'
#' \code{createES} function creates an rds file containing meta information of
#' provided sqlite files for AnnotationDB
#'
#' @param es source ExpressionSet
#'
#' @param dbName name of AnnotationDB file
#'
#' @param columnName name of column in featureData of source ExpressionSet
#'
#' @param columnType Type of indexes in columnName
#'
#' @param keyType Type of mapped indexes
#'
#' @return JSON object with a vector of converted IDs
#' @importFrom AnnotationDbi loadDb mapIds
#'
#' @examples
#' \dontrun{
#' }
#'
#'
convertByAnnotationDB <- function (es, dbName, columnName, columnType, keyType) {
cacheDir <- getOption("phantasusCacheDir")
annotDir <- paste(cacheDir, "annotationdb", sep = .Platform$file.sep)
dbPath <- file.path(annotDir, dbName)
if (!file.exists(dbPath)) {
stop('Invalid database specified')
}
dbFile <- loadDb(dbPath)
inputData <- fData(es)[[columnName]]
convertedData <- mapIds(dbFile,
keys = inputData,
keytype = columnType,
column = keyType,
multiVals = function (x) { paste0(x, collapse="///")})
if (keyType == 'ENSEMBL') {
convertedData <- sapply(convertedData, function (x) unlist(strsplit(x, '[.]'))[1] )
}
convertedData[ convertedData == 'NA' ] <- NA # AnnotationDB can produce 'NA' as string and <NA> as NA. Confusing
fData(es)[[keyType]] <- convertedData
assign("es", es, envir = parent.frame())
return(jsonlite::toJSON(convertedData))
}
#' Get meta list for annotationDB files
#'
#' \code{createES} Function reads an rds file containing meta information of provded
#' sqlite files for AnnotationDB
#'
#' @return meta info in JSON
#' @importFrom utils read.table
#' @examples
#' \dontrun{
#' queryAnnotationDBMeta()
#' }
#'
queryAnnotationDBMeta <- function () {
cacheDir <- getOption("phantasusCacheDir")
annotDir <- paste(cacheDir, "annotationdb", sep = .Platform$file.sep)
columnFiles <- list.files(annotDir, '.selected_fields.txt', full.names = TRUE)
metaList <- list()
for(columnFile in columnFiles) {
columnsTSV <- read.table(file = columnFile, sep = '\t', header = TRUE, skip = 1)
columns <- apply(columnsTSV, 1, paste, collapse = " - ")
orgName = unlist(strsplit(basename(columnFile), ".selected_fields.txt"))[1]
metaList[[orgName]] = list(species = readLines(columnFile, n = 1), columns = columns)
}
return(jsonlite::toJSON(metaList))
}
#' Create meta file for AnnotationDB
#'
#' \code{createES} function creates an rds file containing meta information of
#' provided sqlite files for AnnotationDB
#'
#' @param cacheDir cacheDir for phantasus
#'
#' @return nothing
#'
#' @importFrom AnnotationDbi keys species columns loadDb
#'
#' @examples
#' \dontrun{
#' annotationDBMeta('/var/phantasus/cache')
#' }
#'
annotationDBMeta <- function (cacheDir) {
annotDir <- file.path(cacheDir, "annotationdb")
if (!dir.exists(annotDir)) {
return()
}
message('Populating AnnotationDB meta')
dbFiles <- list.files(annotDir, '*.sqlite$', full.names = TRUE)
for (dbFile in dbFiles) {
db <- loadDb(dbFile)
columnFile <- paste(dbFile, ".selected_fields.txt", sep = "")
if (!file.exists(columnFile)) {
columnsDB <- columns(db)
columns <- sapply(columnsDB, function (column) {
hint <- paste(head(keys(db, keytype=column), n = 2), collapse=";")
return(paste(column, hint, sep=" - "))
})
humanMeta <- t(data.frame(strsplit(columns, " - ", fixed=TRUE)))
cat(AnnotationDbi::species(db), "\n", file=columnFile)
suppressWarnings(write.table(humanMeta, file=columnFile, quote=FALSE, sep='\t', row.names=FALSE, col.names=c('FIELD', 'HINT'), append=TRUE))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.