Nothing
# perturbatr: analysis of high-throughput gene perturbation screens
#
# Copyright (C) 2018 Simon Dirmeier
#
# This file is part of perturbatr
#
# perturbatr is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# perturbatr is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with perturbatr If not, see <http://www.gnu.org/licenses/>.
#' @include util_enums.R
#' @include class_data.R
#' @include class_analysed.R
#' @title Network diffusion
#'
#' @description Propagate the estimated gene effects from a previous analysis
#' over a network using network diffusion. First the estimated effects are
#' normalized and mapped to a given genetic network, for instance a PPI or
#' co-expression network. Then the normalized effects are propagated across
#' the edges of the network using a Markov random walk with restarts.
#' By that the initial ranking of genes
#' (as given by their absolute effect sizes) is re-evaluated and the genes are
#' reordered. Thus network diffusion potentially reduced false negative hits.
#'
#' @export
#' @docType methods
#' @rdname diffuse-methods
#'
#' @import tibble
#'
#' @param obj \code{HMAnalysedPerturbationData} object
#' @param graph a \code{data.frame} or \code{tibble} with three columns
#' representing a symbolic edge list.
#' The first two columns contain node ids. The third column has to be called
#' \emph{weight} and is the \emph{non-negative} weight of the edge between
#' the two nodes.
#' @param r restart probability of the random walk
#' @param delete.nodes.on.degree delete nodes from the graph with a degree of
#' less or equal than \code{delete.nodes.on.degree}
#' @param do.bootstrap run a diffusion on every bootstrap sample in case
#' bootstrap samples are available
#' @param take.largest.component if \code{true} takes only the largest
#' connected component of the graph and discards all nodes that are not in
#' the largest component. If \code{false} takes the compete graph.
#' @param correct.for.hubs if true corrects for the fact that the stationary
#' distribution of the random walk is biased towards hubs.
#'
#' @return returns a \code{NetworkAnalysedPerturbationData} object
#'
#' @examples
#' data(rnaiscreen)
#' hm.fit <- hm(rnaiscreen)
#'
#' graph <- readRDS(system.file(
#' "extdata", "graph_small.rds", package = "perturbatr"))
#' res <- diffuse(hm.fit, graph=graph, r=1)
#'
setGeneric(
"diffuse",
function(obj,
graph=NULL,
r=0.5,
delete.nodes.on.degree=0,
do.bootstrap=FALSE,
take.largest.component=TRUE,
correct.for.hubs=TRUE)
{
standardGeneric("diffuse")
}
)
#' @rdname diffuse-methods
#' @aliases diffuse,HMAnalysedPerturbationData-method
#' @import tibble
#' @importFrom dplyr select filter
#' @importFrom rlang .data
setMethod(
"diffuse",
signature=signature(obj="HMAnalysedPerturbationData"),
function(obj,
graph=NULL,
r=0.5,
delete.nodes.on.degree=0,
do.bootstrap=FALSE,
take.largest.component=TRUE,
correct.for.hubs=TRUE)
{
hits <- dplyr::select(geneEffects(obj), .data$GeneSymbol, .data$Effect)
hits <- dplyr::mutate(hits, "Effect" = abs(.data$Effect))
if (nrow(hits) == 0)
stop("Your prior analysis did not yield gene effect sizes")
bootstrap.hits <- NULL
if (isBootstrapped(obj))
{
bootstrap.hits <- modelFit(obj)$ge.fdrs$ret
bootstrap.hits <- dplyr::filter(bootstrap.hits,
.data$GeneSymbol %in% hits$GeneSymbol)
bootstrap.hits <- dplyr::select(
bootstrap.hits, -.data$Mean, -.data$Pval, -.data$Qval,
-.data$Lower, -.data$Upper)
}
ret <- .diffuse(hits,
mod=obj,
bootstrap.hits=bootstrap.hits,
graph=graph,
r=r,
delete.nodes.on.degree=delete.nodes.on.degree,
do.bootstrap=do.bootstrap,
take.largest.component=take.largest.component,
correct.for.hubs=correct.for.hubs)
ret
}
)
#' @noRd
#' @importFrom igraph get.adjacency
.diffuse <- function(hits,
mod,
bootstrap.hits,
graph,
r,
delete.nodes.on.degree,
do.bootstrap,
take.largest.component,
correct.for.hubs)
{
graph <- .get.graph(graph, delete.nodes.on.degree, take.largest.component)
adjm <- as.matrix(igraph::get.adjacency(graph, attr="weight"))
l <- mrw(hits=hits,
delete.nodes.on.degree=delete.nodes.on.degree,
mod=mod,
bootstrap.hits=bootstrap.hits,
adjm=adjm,
r=r,
graph=graph,
do.bootstrap=do.bootstrap,
take.largest.component=take.largest.component,
correct.for.hubs=correct.for.hubs)
l
}
#' @noRd
#' @importFrom igraph components delete.vertices V degree
.get.graph <- function(graph,delete.nodes.on.degree, take.largest.component)
{
graph <- read.graph(graph)
if (take.largest.component) {
# get connected components
comps <- igraph::components(graph)
if (length(comps$csize) > 1) {
message("Only taking largest connected component to ensure ergodicity.")
}
# get the genes that are not in the largest component
non.max.comp.genes <- names(
which(comps$membership != which.max(comps$csize)))
# remove the genes that are not in the largest component
# this is needed to ensure ergocity
graph <- igraph::delete.vertices(graph, non.max.comp.genes)
}
# delete vertexes with node degree less than delete.nodes.on.degree
graph <- igraph::delete.vertices(
graph,
igraph::V(graph)[igraph::degree(graph) <= delete.nodes.on.degree])
graph
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.