Nothing
#' Calculate pathway-specific Student's \eqn{t}-scores from a null distribution
#' for supervised PCA
#'
#' @description Parametrically resample the response vector before model
#' analysis. Then extract principal components (PCs) from the gene pathway,
#' and return the test statistics associated with the first \code{numPCs}
#' principal components at a set of threshold values based on the resampled
#' values of the response.
#'
#' @param pathway_vec A character vector of the measured -Omes in the chosen
#' gene pathway. These should match a subset of the rownames of the gene
#' array.
#' @param geneArray_df A "tall" pathway data frame (\eqn{p \times N}). Each
#' subject or tissue sample is a column, and the rows are the -Ome
#' measurements for that sample.
#' @param response_mat A response matrix corresponding to \code{responseType}.
#' For \code{"regression"} and \code{"categorical"}, this will be an
#' \eqn{N \times 1} matrix of response values. For \code{"survival"}, this
#' will be an \eqn{N \times 2} matrix with event times in the first column
#' and observed event indicator in the second.
#' @param responseType A character string. Options are \code{"survival"},
#' \code{"regression"}, and \code{"categorical"}.
#' @param n.threshold The number of bins into which to split the feature scores
#' in the \code{fit} object returned internally by the
#' \code{\link{superpc.train}} function.
#' @param numPCs The number of PCs to extract from the pathway.
#' @param min.features What is the smallest number of genes allowed in each
#' pathway? This argument must be kept constant across all calls to this
#' function which use the same pathway list. Defaults to 3.
#'
#' @return A matrix with \code{numPCs} rows and \code{n.threshold} columns.
#' The matrix values are model \eqn{t}-statisics for each PC included (rows)
#' at each threshold level (columns).
#'
#' @details This is a wrapper function to call \code{\link{superpc.train}}
#' and \code{\link{superpc.st}} after response parametric bootstrapping with
#' the \code{\link{RandomControlSample}} suite of functions. This response
#' sampling will act as a null distribution against which to compare
#' the results from the \code{\link{pathway_tScores}} function.
#'
#' This wrapper is designed to facilitate apply calls (in parallel or
#' serially) of these two functions over a list of gene pathways. When
#' \code{numPCs} is equal to 1, we recommend using a simplify-style apply
#' variant, such as \code{sapply} (shown in \code{\link[base]{lapply}}) or
#' \code{parSapply} (shown in \code{\link[parallel]{clusterApply}}), then
#' transposing the resulting matrix.
#'
#' @seealso \code{\link{pathway_tScores}}; \code{\link{RandomControlSample}};
#' \code{\link{superpc.train}}; \code{\link{superpc.st}}
#'
#' @keywords internal
#'
#'
#' @examples
#' # DO NOT CALL THIS FUNCTION DIRECTLY.
#' # Use SuperPCA_pVals() instead
#'
#' \dontrun{
#' data("colon_pathwayCollection")
#' data("colonSurv_df")
#'
#' colon_OmicsSurv <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "surv"
#' )
#'
#' asthmaGenes_char <-
#' getTrimPathwayCollection(colon_OmicsSurv)[["KEGG_ASTHMA"]]$IDs
#' resp_mat <- matrix(
#' c(getEventTime(colon_OmicsSurv), getEvent(colon_OmicsSurv)),
#' ncol = 2
#' )
#'
#' pathway_tControl(
#' pathway_vec = asthmaGenes_char,
#' geneArray_df = t(getAssay(colon_OmicsSurv)),
#' response_mat = resp_mat,
#' responseType = "survival"
#' )
#' }
#'
pathway_tControl <- function(pathway_vec,
geneArray_df,
response_mat,
responseType = c("survival",
"regression",
"categorical"),
n.threshold = 20,
numPCs = 1,
min.features = 3){
# browser()
sampResp <- SampleResponses(
response_vec = response_mat[, 1],
event_vec = response_mat[, 2],
respType = responseType,
parametric = TRUE
)
data_ls <- switch(responseType,
survival = {
list(
x = geneArray_df[pathway_vec, ],
y = sampResp$response_vec,
censoring.status = sampResp$event_vec,
featurenames = pathway_vec
)
},
regression = {
list(
x = geneArray_df[pathway_vec, ],
y = sampResp,
featurenames = pathway_vec
)
},
categorical = {
list(
x = geneArray_df[pathway_vec, ],
y = sampResp,
featurenames = pathway_vec
)
})
train <- superpc.train(data_ls, type = responseType)
st.obj <- superpc.st(
fit = train,
data = data_ls,
n.PCs = numPCs,
min.features = min.features,
n.threshold = n.threshold
)
st.obj$tscor
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.