R/superPC_optimWeibullParams.R

Defines functions OptimGumbelMixParams

Documented in OptimGumbelMixParams

#' Calculate the optimal parameters for a mixture of Weibull Extreme Value
#'    Distributions for supervised PCA
#'
#' @description Calculate the parameters which minimise the negative log-
#'    likelihood of a mixture of two Weibull Extreme Value distributions.
#'
#' @param max_tControl_vec A vector of the maximum absolute \eqn{t}-scores for
#'    each pathway (returned by the \code{\link{pathway_tControl}} function)
#'    when under the null model. Under the null model, the response vector will
#'    have been randomly generated or parametrically bootstrapped.
#' @param pathwaySize_vec A vector of the number of genes in each pathway.
#' @param initialVals A named vector of initial values for the Weibull
#'    parameters. The values are
#'    \itemize{
#'      \item{\eqn{p} : }{The mixing proportion between the Gumbel minimum and
#'         Gumbel maximum distributions. This parameter is bounded by
#'         \eqn{[0, 1]} and defaults to 0.5.}
#'      \item{\eqn{\mu_1} : }{The mean of the first distribution. This parameter
#'         is unbounded and defaults to 1.}
#'      \item{\eqn{s_1} : }{The precision of the first distribution. This
#'         parameter is bounded below by 0 and defaults to 0.5.}
#'      \item{\eqn{\mu_2} : }{The mean of the second distribution. This parameter
#'         is unbounded and defaults to 1.}
#'      \item{\eqn{s_2} : }{The precision of the second distribution. This
#'         parameter is bounded below by 0 and defaults to 0.5.}
#'    }
#' @param optimMethod Which numerical optimization routine to pass to the
#'    \code{\link[stats]{optim}} function. Defaults to \code{"L-BFGS-B"}, which
#'    allows for lower and upper bound constraints. When this option is
#'    specified, lower and upper bounds for ALL parameters must be supplied.
#' @param lowerBD A vector of the lower bounds on the \code{initialVals}.
#'    Defaults to \code{c(0, -Inf, 0, -Inf, 0)}.
#' @param upperBD A vector of the upper bounds on the \code{initialVals}.
#'    Defaults to \code{c(1, Inf, Inf, Inf, Inf)}.
#'
#' @return A named vector of the estimated values for the parameters which
#'    minimize the negative log-likelihood of the mixture Weibull Extreme Value
#'    distributions.
#'
#' @details The likelihood function is equation (4) in Chen et al (2008): a
#'    mixture of two Gumbel Extreme Value probability density functions, with
#'    mixing proportion \eqn{p}. Within the code of this function, the values
#'    \code{mu1}, \code{mu2} and \code{s1}, \code{s2} are placeholders for the
#'    mean and precision, respectively.
#'
#'    A computational note: the \code{"L-BFGS-B"} option within the
#'    \code{\link[stats]{optim}} function requires a bounded function or
#'    likelihood. We therefore replaced \code{Inf} with \code{10 ^ 200} in the
#'    check for boundedness. As we are attempting to minimise the negative log-
#'    likelihood, this maximum machine value is effectively \code{+Inf}.
#'
#'    See \url{https://doi.org/10.1093/bioinformatics/btn458} for more
#'    information.
#'
#' @seealso \code{\link[stats]{optim}}; \code{\link{GumbelMixpValues}};
#'    \code{\link{pathway_tControl}}; \code{\link{SuperPCA_pVals}}
#'
#' @keywords internal
#'
#'
#' @importFrom stats as.formula
#' @importFrom stats deriv
#' @importFrom stats optim
#'
#' @examples
#'   # DO NOT CALL THIS FUNCTION DIRECTLY.
#'   # Use SuperPCA_pVals() instead.
#'
#' \dontrun{
#'   ###  Load the Example Data  ###
#'   data("colon_pathwayCollection")
#'
#'
#'   ###  Simulate Maximum Absolute Control t-Values  ###
#'   # The SuperPCA algorithm defaults to 20 threshold values; the example
#'   #   pathway collection has 15 pathways.
#'   t_mat <- matrix(rt(15 * 20, df = 5), nrow = 15)
#'
#'   absMax <- function(vec){
#'     vec[which.max(abs(vec))]
#'   }
#'   tAbsMax_num <- apply(t_mat, 1, absMax)
#'
#'
#'   ###  Calculate Optimal Parameters for the Gumbel Distribution  ###
#'   OptimGumbelMixParams(
#'     max_tControl_vec = tAbsMax_num,
#'     pathwaySize_vec = lengths(colon_pathwayCollection$pathways)
#'   )
#' }
#'
OptimGumbelMixParams <- function(max_tControl_vec,
                                 pathwaySize_vec,
                                 initialVals = c(p = 0.5,
                                                 mu1 = 1, s1 = 0.5,
                                                 mu2 = 1, s2 = 0.5),
                                 optimMethod = "L-BFGS-B",
                                 lowerBD = c(0, -Inf, 0, -Inf, 0),
                                 upperBD = c(1, Inf, Inf, Inf, Inf)){
  # browser()

  ###  Pathway Cardinality  ###
  # Don't know what this does
  calc_anbn <- function(length_vec){

    logn <- log(length_vec)
    an1 <- sqrt(2 * logn)
    top <- log(4 * pi) + log(logn)
    bottom <- 2 * logn
    bn1 <- an1 * (1 - 0.5 * top / bottom)

    list(an = an1, bn = bn1)

  }
  abn_ls <- calc_anbn(pathwaySize_vec)


  ###  The Likelihood Function  ###
  # The formulation here is different from the paper in the following:
  #   1. They define zi = (t - mu_i) / sigma_i
  #   2. They divide p and (1 - p) by sigma 1 and 2, respectively.
  # The values for s are not used appropriately: the s values are used more as
  #   precision (being multiplied instead of used as a divisor).
  gumbelMixture <- function(p_vec, maxt_vec, an_vec, bn_vec){

    z1 <- (maxt_vec - bn_vec - p_vec["mu1"]) * an_vec * p_vec["s1"]
    z2 <- (maxt_vec + bn_vec + p_vec["mu2"]) * an_vec * p_vec["s2"]
    e  <- (p_vec["p"] * an_vec * p_vec["s1"]) *
      exp(-z1 - exp(-z1)) +
      ((1 - p_vec["p"]) * an_vec * p_vec["s2"]) *
      exp(z2 - exp(z2))

    ifelse(test = any(e <= 0), yes = 10 ^ 200, no = -sum(log(e)))

  }


  ###  The Score Function  ###
  gumbelMix_score <- function(p_vec, maxt_vec, an_vec, bn_vec){

    innard_formula <- as.formula(~ -log(
      (p * an * s1) *
        exp(-((x - bn - mu1) * an * s1) - exp(-(x - bn - mu1) * an * s1)) +
        ((1 - p) * an * s2) *
        exp(((x + bn + mu2) * an * s2) - exp((x + bn + mu2) * an * s2))
    )
    )

    lmix_fun <- deriv(innard_formula,
                      c("p", "mu1", "s1", "mu2", "s2"),
                      function(x, an, bn, p, mu1, s1, mu2, s2) NULL)

    gradient <- lmix_fun(x = maxt_vec,
                         an = an_vec, bn = bn_vec,
                         p = p_vec["p"],
                         mu1 = p_vec["mu1"], s1 = p_vec["s1"],
                         mu2 = p_vec["mu2"], s2 = p_vec["s2"])
    # Extract the gradient matrix from the gradient vector, then find the
    #   column sums of that matrix
    colSums(attr(gradient,"gradient"))

  }


  ###  Constrained Optimization of the Likelihood  ###
  # Put a constraint on the bounds of p to avoid a global minimum where p is
  #   not an element of [0,1]. Otherwise, the solution will be p ~= -8k.
  pOptim <- optim(par = initialVals,
                  fn = gumbelMixture,
                  gr = gumbelMix_score,
                  maxt_vec = max_tControl_vec,
                  an_vec = abn_ls$an,
                  bn_vec = abn_ls$bn,
                  method = optimMethod,
                  lower = lowerBD,
                  upper = upperBD)$par

  pOptim

}

Try the pathwayPCA package in your browser

Any scripts or data that you put into this service are public.

pathwayPCA documentation built on Dec. 15, 2020, 6:14 p.m.