Nothing
#' Singular Value Decomposition wrapper for supervised PCA
#'
#' @param mat A matrix of data frame in "tall" format (\eqn{p \times n}).
#' @param method What function should be used to extract the left- and right-
#' singular vectors and singular values? Any function that returns the values
#' as a list with components \code{u}, \code{v}, and \code{d} is appropriate.
#' Defaults to \code{\link[base]{svd}}.
#' @param n.components How many singular values / vectors to return? Must be an
#' integer less than \eqn{min(p, n)}. Best performance increase is for values
#' much less than \eqn{min(p, n)}. Defaults to \code{NULL}.
#'
#' @description Center and compute the SVD of a matrix
#'
#' @return A list containing:
#' \itemize{
#' \item{\code{u} : }{The first \code{n.components} left singular vectors of
#' \code{mat}.}
#' \item{\code{d} : }{The largest \code{n.component} singular values of
#' \code{mat}.}
#' \item{\code{v} : }{The first \code{n.components} right singular vectors of
#' \code{mat}.}
#' \item{\code{feature.means} : }{A named vector of the feature means of
#' \code{mat}.}
#' }
#'
#' @details The \code{mysvd} function takes in a tall -Omics data matrix,
#' extracts the feature means, centers the matrix on this mean vector, and
#' calculates the Singular Value Decomposition (SVD) of the centered data
#' matrix. Currently, the SVD is calculated via the
#' \code{\link[corpcor]{fast.svd}} function from \code{corpcor} package.
#' However, this function calculates all the singular vectors, even when
#' \code{n.components} is non-\code{NULL}. We should experiment with other SVD
#' functions, such as the \code{\link[rsvd]{rsvd}} function from the
#' \code{rsvd} package. ENHANCEMENT.
#'
#' @keywords internal
#'
#'
#' @examples
#' # DO NOT CALL THIS FUNCTION DIRECTLY.
#' # Use SuperPCA_pVals() instead
#'
#' \dontrun{
#' data("colon_pathwayCollection")
#' data("colonSurv_df")
#'
#' colon_OmicsSurv <- CreateOmics(
#' assayData_df = colonSurv_df[,-(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "surv"
#' )
#'
#' asthmaGenes_char <-
#' getTrimPathwayCollection(colon_OmicsSurv)[["KEGG_ASTHMA"]]$IDs
#'
#' mysvd(t(getAssay(colon_OmicsSurv))[asthmaGenes_char, ])
#' }
#'
mysvd <- function(mat, method = svd, n.components = NULL){
# finds PCs of matrix x
p <- nrow(mat)
n <- ncol(mat)
# center the observations (rows)
feature.means <- rowMeans(mat)
# mat <- t(scale(t(mat), center = feature.means, scale = FALSE))
# We moved the scaling step to object creation. See CreateOmics()
mat <- as.matrix(mat)
if(is.null(n.components)){
n.components <- min(n, p)
}
junk <- method(mat)
nc <- min(ncol(junk$u), n.components)
list(
u = junk$u[, seq_len(nc)],
d = junk$d[seq_len(nc)],
v = junk$v[, seq_len(nc)],
feature.means = feature.means
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.