Nothing
########################################################################
# Intensity and spatial normalization using robust neural networks fitting
#######################################################################
require(nnet)
require(marray)
detectSpatialBias<-function(mbatch, corThreshold=0.6)
{
#see what kind of object is mbatch and initialize a new normalized one "mbatchn"
if (class(mbatch)=="marrayRaw") {
mbatchn<-as(mbatch, "marrayNorm")
}else if(class(mbatch)=="marrayNorm"){
mbatchn<-mbatch
}else stop("Mbatch must be an object of type marrayRaw or marrayNorm")
NSlides<-maNsamples(mbatch) #get the number of slides in batch
Npt<-maNgr(mbatch)*maNgc(mbatch) #get the number of print tips
Nspots<-maNspots(mbatch) #get the number of spots per slide
lrow<-maNsc(mbatch)
lcol<-maNsr(mbatch)
resCorlCol<-array(NA,dim=c(lcol,Npt,NSlides))
resCorlRow<-array(NA,dim=c(lrow,Npt,NSlides))
for (s in 1:NSlides){ #for each slide
cat(paste("\n","Processing array ",s," of ",NSlides,"\n",sep=""));
for (pt in 1:Npt){ #for each print Tip
cat("*");
for(coli in 1:lrow){
#get positions in each sector
ccorl<-NULL
ind<-(maPrintTip(mbatch)==pt)&maSpotCol(mbatch)==coli
#M<-maM(mbatch[ind,s])[1:round(lcol/2)]
#resCorlRow[1,coli,pt,s]<-cor(M[!is.na(M)],(1:round(lcol/2))[!is.na(M)])
#M<-maM(mbatch[ind,s])[(round(lcol/2)+1):lcol]
#resCorlRow[2,coli,pt,s]<-cor(M[!is.na(M)],((round(lcol/2)+1):lcol)[!is.na(M)])
M<-maM(mbatch[ind,s])
resCorlRow[coli,pt,s]<-cor(M[!is.na(M)],(1:lcol)[!is.na(M)])
}
for(rowi in 1:lcol){
#get positions in each sector/tip group
ind<-(maPrintTip(mbatch)==pt)&maSpotRow(mbatch)==rowi
#M<-maM(mbatch[ind,s])[1:round(lrow/2)]
#resCorlCol[rowi,1,pt,s]<-cor(M[!is.na(M)],(1:round(lrow/2))[!is.na(M)])
#M<-maM(mbatch[ind,s])[(round(lrow/2)+1):lrow]
#resCorlCol[rowi,2,pt,s]<-cor(M[!is.na(M)],((round(lrow/2)+1):lrow)[!is.na(M)])
M<-maM(mbatch[ind,s])
resCorlCol[rowi,pt,s]<-cor(M[!is.na(M)],(1:lrow)[!is.na(M)])
}
} #end with print tip
}#end with slide
biasCol<-matrix(NA,Npt,NSlides)
biasRow<-matrix(NA,Npt,NSlides)
sCol<-NULL;ptCol<-NULL;
sRow<-NULL;ptRow<-NULL;
for (s in 1:NSlides){ #for each slide
for (pt in 1:Npt){ #for each print Tip
biasRow[pt,s]<-round(max(c(sum(resCorlRow[,pt,s]>corThreshold),sum(resCorlRow[,pt,s]<(-corThreshold))))/lrow*100,1)
biasCol[pt,s]<-round(max(c(sum(resCorlCol[,pt,s]>corThreshold),sum(resCorlCol[,pt,s]<(-corThreshold))))/lcol*100,1)
}#end with print tip
} #end with slide
colnames(biasRow)<-colnames(biasCol)<-colnames(maM(mbatch))
rownames(biasRow)<-rownames(biasCol)<-paste("PrintTip",1:Npt,sep="")
list(biasRow=biasRow,biasCol=biasCol)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.