Nothing
#' @title Dna damage data set (PPI and expression)
#' @description A combined yeast data set with protein-protein interactions and gene expression (dna damage). Gene expression profiles are transformed into links by computing a Pearson correlation for all pairs of genes and treating all correlations above 0.85 as additional links. Number of genes: 1823, number of interactions: 12382, number of gene expression observations: 52, number of total links with PPI and expression links: 15547.
#' @name dna
#' @docType data
#' @usage data(dna)
#' @format List of following objects: \describe{ \item{ppi}{PPI data matrix}
#' \item{exp}{gene expression profiles data matrix} \item{gids}{Vector of gene
#' ids corresponding to indices used in data matrices} \item{obs}{Gene
#' expression observation details} \item{combined.links}{pooled matrix of PPI
#' and expression links} }
#' @references Ulitsky, I. and Shamir, R. \emph{Identification of functional
#' modules using network topology and high-throughput data.} BMC Systems
#' Biology 2007, 1:8.
#'
#' Nariai, N., Kolaczyk, E. D. and Kasif, S. \emph{Probabilistic Protein
#' Function Predition from Heterogenous Genome-Wide Data}. PLoS ONE 2007,
#' 2(3):e337.
#'
#' Gasch, A., Huang, M., Metzner, S., Botstein, D. and Elledge, S.
#' \emph{Genomic expression responses to DNA-damaging agents and the regulatory
#' role of the yeast ATR homolog Mex1p.} Molecular Biology of the Cell 2001,
#' 12:2987-3003.
#' @source PPI data pooled from yeast data sets of [1] and [2]. Dna damage
#' expression set of [3].
#' @keywords datasets
#' @examples data(dna)
NULL
#' @title Class 'NetResponseModel'
#' @description A NetResponse model.
#' @name NetResponseModel-class
#' @aliases NetResponseModel-class [[,NetResponseModel-method show,NetResponseModel-method
#' @docType class
#' @section Objects from the Class: Returned by \code{\link{detect.responses}}
#' function.
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords classes
#' @examples showClass('NetResponseModel')
NULL
#' @title NetResponse: Global modeling of transcriptional responses in interaction networks
#' @description Global modeling of transcriptional responses in interaction networks.
#' \tabular{ll}{ Package: \tab netresponse\cr Type: \tab Package\cr Version:
#' \tab See sessionInfo() or DESCRIPTION file\cr Date: \tab 2011-02-03\cr
#' License: \tab GNU GPL >=2\cr LazyLoad: \tab yes\cr }
#' @name netresponse-package
#' @aliases netresponse-package netresponse
#' @docType package
#' @useDynLib netresponse
#' @author Leo Lahti, Olli-Pekka Huovilainen, Antonio Gusmao and Juuso
#' Parkkinen. Maintainer: Leo Lahti \email{leo.lahti@@iki.fi}
#' @references Leo Lahti et al.: Global modeling of transcriptional responses
#' in interaction networks. Bioinformatics (2010). See citation('netresponse')
#' for details.
#' @keywords package
#' @examples
#' # Define parameters for toy data
#' Ns <- 200 # number of samples (conditions)
#' Nf <- 10 # number of features (nodes)
#' feature.names <- paste('feat', seq(Nf), sep='')
#' sample.names <- paste('sample', seq(Ns), sep='')
#' # random seed
#' set.seed( 123 )
#' # Random network
#' netw <- pmax(array(sign(rnorm(Nf^2)), dim = c(Nf, Nf)), 0)
#' # in pathway analysis nodes correspond to genes
#' rownames(netw) <- colnames(netw) <- feature.names
#' # Random responses of the nodes across conditions
#' D <- array(rnorm(Ns*Nf), dim = c(Ns,Nf), dimnames = list(sample.names, feature.names))
#' D[1:100, 4:6] <- t(sapply(1:(Ns/2),function(x){rnorm(3, mean = 1:3)}))
#' D[101:Ns, 4:6] <- t(sapply(1:(Ns/2),function(x){rnorm(3, mean = 7:9)}))
#' # Calculate the model
#' model <- detect.responses(D, netw)
#' # Subnets (each is a list of nodes)
#' get.subnets( model )
NULL
#' @title Osmoshock data set (PPI and expression)
#' @description A combined yeast data set with protein-protein interactions and gene expression (osmotick shock response). Gene expression profiles are transformed into links by computing a Pearson correlation for all pairs of genes and treating all correlations above 0.85 as additional links. Number of genes: 1711, number of interactions: 10250, number of gene expression observations: 133, number of total links with PPI and expression links: 14256.
#' @name osmo
#' @docType data
#' @usage data(osmo)
#' @format List of following objects: \describe{ \item{ppi}{PPI data matrix}
#' \item{exp}{gene expression profiles data matrix} \item{gids}{Vector of gene
#' ids corresponding to indices used in data matrices} \item{obs}{Gene
#' expression observation details} \item{combined.links}{pooled matrix of PPI
#' and expression links} }
#' @references Ulitsky, I. and Shamir, R. \emph{Identification of functional
#' modules using network topology and high-throughput data.} BMC Systems
#' Biology 2007, 1:8.
#'
#' Nariai, N., Kolaczyk, E. D. and Kasif, S. \emph{Probabilistic Protein
#' Function Predition from Heterogenous Genome-Wide Data}. PLoS ONE 2007,
#' 2(3):e337.
#'
#' O'Rourke, S. and Herskowitz, I. \emph{Unique and redundant roles for Hog
#' MAPK pathway components as revealed by whole-genome expression analysis.}
#' Molecular Biology of the Cell 2004, 15:532-42.
#' @source PPI data pooled from yeast data sets of [1] and [2]. Dna damage
#' expression set of [3].
#' @keywords datasets
#' @examples data(osmo)
NULL
#' @title toydata
#' @description Toy data for NetResponse examples.
#' @name toydata
#' @docType data
#' @usage data(toydata)
#' @format
#' Toy data: a list with three elements:
#'
#' emat: Data matrix (samples x features). This contains the same features that
#' are provided in the network (toydata$netw). The matrix characterizes
#' measurements of network states across different conditions.
#'
#' netw: Binary matrix that describes pairwise interactions between features.
#' This defines an undirected network over the features. A link between two
#' nodes is denoted by 1.
#'
#' model: A pre-calculated model. Object of NetResponseModel class, resulting
#' from applying the netresponse algorithm on the toydata with model <-
#' detect.responses(D, netw).
#' @references Leo Lahti et al.: Global modeling of transcriptional responses
#' in interaction networks. Bioinformatics (2010).
#' @keywords misc
#' @examples
#' data(toydata)
#' D <- toydata$emat # Response matrix (samples x features)
#' netw <- toydata$netw # Network between the features
#' model <- toydata$model # Pre-calculated NetResponseModel obtained with
#' # model <- detect.responses(D, netw)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.