Nothing
###################################################################
# "An article about computational science in a scientific publication
# is not the scholarship itself, it is merely advertising of the
# scholarship. The actual scholarship is the complete software
# development environment and the complete set of instructions
# which generate the figures."
# - Jon Claerbout
###################################################################
#' Description: Probabiity of mode given multiple samples (ie. data matrix)
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.rS <- function (dat, pars, log = TRUE) {
# Probability of a response, given sample (group)
# P(r|S) = P(S|r)P(r)/P(S) = P(S, r)/(sum_r P(S, r))
# P(r|S) = P(S|r)P(r)/sum_r(P(S|r)P(r)) = (a*P(S|r)P(r))/(a*sum_r(P(S|r)P(r)))
# -> log P(r|S) = log((a*P(S|r)P(r))/(a*sum_r(P(S|r)P(r)))) = log(a) + log(P(S|r)P(r)) - log(a) - log(sum_r(P(S|r)P(r)))
# = log(a*P(S, r)) - log(sum_r(a*P(S, r)))
# = log(a*psr) - log(sum_r(a*psr)) = log(a) + log(psr) - log(sum_r(exp(log(a) + log(psr))))
# NOTE: unstable due to overflows in particular when multiple samples are used
# Log P(r|S) = logP(S, r) - log(sumr(P(S, r)))
#logp <- psr.log - log(sum(exp(psr.log)))
# psr <- get.P.rs.joint(sample, model, subnet.id, log = FALSE)
# joint density P(S, r) for each component r
psr.log <- P.rs.joint(dat, pars, log = TRUE)
# density P(r|S), avoiding numerical overflows with log.a trick
log.a <- 10 - max(psr.log)
logp <- log.a + psr.log - log(sum(exp(log.a + psr.log)))
# Compared output in univariate case to the direct calculation:
#ps <- pars$w * dnorm(4.467782, mean = pars$mu, sd = pars$sd); ps/sum(ps)
#P.rS(matrix(4.467782), pars, log = FALSE)
# -> OK
if (log) {
logp
} else {
exp(logp)
}
}
#' Description: Probabiity of mode given a sample (a data vector)
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#' @param scaling Try to avoid floating errors. To be improved later.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.r.s <- function (dat, pars, log = TRUE, scaling = 0) {
# FIXME rowmeans(qofz) is constant but not 1
# P(r|s) for each response r and sample s
if (length(pars$w) == 1) {
# If there is only one mode, its likelihood is 1 for all samples
qofz <- matrix(rep(1, ncol(dat)))
rownames(qofz) <- colnames(dat)
} else {
logp <- P.rs.joint.individual(dat, pars, log = TRUE)
# Try scaling to avoind floating errors that occur easily with small probs
qofz <- t(apply(logp, 2, function (logx) {xs <- (scaling + logx); exp(xs)/sum(exp(xs))}))
}
if ( log ) { qofz <- log(qofz) }
matrix(qofz, nrow = ncol(dat))
}
#' Description: Joint probabiity density for mode and sample
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.rs.joint.individual <- function (dat, pars, log = TRUE) {
# P(r,s) = P(s|r)P(r) = P(r|s)P(s)
# P(r, s) for all samples and responses. Should hold sum_r P(r, s) = P(s) -> OK
# Alternatively: logp.joint <- t(t(prs.log) + ps.log)
# FIXME: merge with P.rs.joint and/or P.rS to avoid redundancy
psr.log <- P.s.r(dat, pars, log = TRUE)
pr.log <- as.vector(log(pars$w))
logp.joint <- psr.log + pr.log
colnames(logp.joint) <- colnames(dat)
if (log) {
logp.joint
} else {
exp(logp.joint)
}
}
#' Description: Joint probabiity density for mode and sample group
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.rs.joint <- function (dat, pars, log = TRUE) {
# Joint (Log) density of a given sample group: P(S, r) = P(S|r)P(r)
# and each mixture component r.
# First calculate
# P(S|r) for each response; length of output equals to number of responses
# i.e. logsum of the individual sample densities
pSr.log <- P.Sr(dat, pars, log = TRUE) #get.P.Sr(sample, model, subnet.id, log = TRUE)
# Density for each mixture component
pr.log <- log(pars$w)
logp.joint <- pSr.log + pr.log
# Alternative:
# logp.joint <- rowSums(get.P.rs.joint.individual(sample, model, pars, subnet.id, log = TRUE))
if (log) {
return(logp.joint)
} else {
return(exp(logp.joint))
}
}
#' Description: Probabiity density for sample group given mode
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.Sr <- function (dat, pars, log = TRUE) {
# dat is features x samples matrix
psr <- P.s.r(dat, pars, log = TRUE)
# Returns responses x samples matrix
# for each response, calculate logsum over samples
if (log) {
rowSums(psr)
} else {
exp(rowSums(psr))
}
}
#' Description: Probabiity density for sample given mode
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.s.r <- function (dat, pars, log = TRUE) {
# dat: features x samples matrix
# Log probability density on each data point for each response
# P(s|r)
if (!nrow(dat) == ncol(pars$mu)) { stop("Dimensions in dat and pars do not match!") }
# FIXME: in many cases density needs to be calculated just within a
# single response, here calculated for all responses. Speedup by
# having this for given response only.
if ( is.vector(dat) ) { dat <- as.matrix(dat, nrow = length(dat)) }
# responses x samples matrix P(s|r)
psr <- matrix(NA, nrow = length(pars$w), ncol = ncol(dat))
if (!is.null(colnames(dat))) { colnames(psr) <- colnames(dat) }
for ( response in seq_len(length( pars$w ))) {
# Given the diagonal covariances, the density is product (log-sum)
# over the densities for individual features (on each data point)
psr[response, ] <- colSums(dnorm(dat, mean = as.numeric(pars$mu[response, ]), sd = as.numeric(pars$sd[response, ]), log = TRUE))
}
logp <- psr # responses x samples
rownames(logp) <- names(pars$w)
colnames(logp) <- colnames(dat)
if (log) {
logp
} else {
exp(logp)
}
}
#' Description: Probabiity density for sample
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.S <- function (dat, pars, log = TRUE) {
# psi: individual sample densities P(s) given in _log domain_
# FIXME: develop this s.t. calculates individual sample densities independently
# Overall probability of sample s, given the Gaussian mixture model
# P(s) = sum_r P(s, r)
# ps <- log(sum(get.P.rs.joint(sample, model, subnet.id, log = FALSE)))
# FIXME: numerically does not hold tightly that P(S) = sumr P(S, r) = sumr P(S|r)P(r)
# the latter equality holds, P(S) is problematic. Differences are not big for examples
# I checked, but they are still notable. Check in more detail this one.
#sum(get.P.rs.joint(s, model, subnet.id, log = FALSE))
#sum(get.P.Sr(s, model, pars = NULL, subnet.id, log = FALSE) * pars$w)
ps <- sum(P.s.individual(dat, pars, log = TRUE)) # log sum
if (log) {
ps
} else {
exp(ps)
}
}
#' Description: Probabiity density for individual sample
#' Mainly for internal use; documentation will be provided later. Tools for calculating densities with Gaussian mixture models.
#'
#' Arguments:
#' @param dat features x samples data matrix for mixture modeling
#' @param pars Gaussian mixture model parameters (diagonal covariances); list with elements mu (mean vectors), sd (covariance diagonals), w (weights). The mu and sd are component x features matrices, w is vector giving weight for each component.
#' @param log Logical. Return densities in log domain.
#'
#' Returns:
#' @return Probability density
#'
#' @references See citation("netresponse")
#' @author Contact: Leo Lahti \email{leo.lahti@@iki.fi}
#' @keywords internal utilities
P.s.individual <- function (dat, pars, log = TRUE) {
# FIXME: merge with P.S (?)
# Overall probability of sample s, given the model.
# individually for each sample
# responses x samples
# for each sample (column), density mass is the sum over joint densities on individual responses
# P(s) = sum_r P(s, r) = sum_r P(s,r) = sum_r P(s|r)P(r)
ps <- colSums(P.rs.joint.individual(dat, pars, log = FALSE))
# two alternatives to calculate P(s)
# log(colSums(get.P.rs.joint.individual(rsample, model, subnet.id, log = FALSE)))
# log(sum(get.P.Sr(rsample, model, subnet.id, log = FALSE) * get.P.r(model, subnet.id, log = FALSE)))
# get.P.s(rsample, model, subnet.id, log = TRUE)
# log only after summation:
if (log) {
log(ps)
} else {
ps
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.