Nothing
# library(Rgraphviz)
# library(e1071)
# library(caTools)
# library(combinat)
## The following function computes the transitive projections (approximations) of the input graph. Input to the function is either a graphNEL object or the adjacency matrix
transitive.projections <- function(adjmat)
{
if (!(class(adjmat)%in%c("graphNEL","matrix")))
stop("Input must be either graphNEL object or adjacency matrix")
## if input is an adjacency matrix
if (class(adjmat)=="matrix")
{
n <- ncol(adjmat)
}
## If input is a graph
## convert the graph into its adjacency matrix
graph2adj <- function(gR) {
# adj.matrix <- matrix(0,
# length(nodes(gR)),
# length(nodes(gR))
# )
# rownames(adj.matrix) <- nodes(gR)
# colnames(adj.matrix) <- nodes(gR)
# for (i in 1:length(nodes(gR))) {
# adj.matrix[nodes(gR)[i],adj(gR,nodes(gR)[i])[[1]]] <- 1
# }
# return(adj.matrix)
as(gR, "matrix")
}
if (class(adjmat)=="graphNEL")
{
adjmat <- graph2adj(adjmat)
n <- ncol(adjmat)
}
## If input graph is transitive, then return the same graph with minimum distance 0
if (is.transitive(adjmat,nrow(adjmat)))
{
return(list(Optimum=adjmat, MinDist=0))
}
## To speed up the process one could start with some transitive subgraph of the initial graph and proceed. The following are the initialization steps. In case no transitive subgraphs are found, then we start with the empty graph.
imat <- transSubGr(adjmat)
s0 <- list(imat) # list of transitive approximations
s1 <- OneNeighborhood(imat) # suboptimal transapprox of dist 1
s2 <- TwoNeighborhood(imat) # suboptimal transapprox of dist 2
s3 <- ThreeNeighborhood(imat) # suboptimal transapproxs of dist 3
s4 <- FourNeighborhood(imat) # suboptimal transapproxs of dist 4
edgesofg <- as.vector(adjmat) # edges of the givengraph
currentgraph <- as.vector(matrix(imat,nrow=n,ncol=n))
mindist = 0
NrRemainingEdges <- setdiff(which(adjmat==1),which(imat==1))
##
CheckEdge <- function(listgraph, edge)
{ l <- list()
for (i in 1:length(listgraph))
l[[i]] <- listgraph[[i]][edge]==1
return(any(unlist(l)==TRUE))
}
##
for (j in 1:length(NrRemainingEdges))
{ cat("j=",j,"\n")
currentgraph[NrRemainingEdges[j]] <- edgesofg[NrRemainingEdges[j]]
if (CheckEdge(s0,NrRemainingEdges[j]))
{ mindist = mindist - 1
s0c <- s0
s1c <- s1
s2c <- s2
s0 <- distdecrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$optimal
s1 <- distdecrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal1
s2 <- distdecrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal2
s30 <- lapply(s0, function(x) ThreeNeighborhood(x))
if (class(s30)=="list")
s30 <- unique(unlist(s30, recursive=FALSE))
s40 <- lapply(s0, function(x) FourNeighborhood(x))
if (class(s40)=="list")
s40 <- unique(unlist(s40, recursive=FALSE))
s31 <- lapply(s1, function(x) TwoNeighborhood(x))
if (class(s31)=="list")
s31 <- unique(unlist(s31, recursive=FALSE))
s41 <- lapply(s1, function(x) ThreeNeighborhood(x))
if (class(s41)=="list")
s41 <- unique(unlist(s41, recursive=FALSE))
s32 <- lapply(s2, function(x) OneNeighborhood(x))
if (class(s32)=="list")
s32 <- unique(unlist(s32, recursive=FALSE))
s42 <- lapply(s2, function(x) TwoNeighborhood(x))
if (class(s42)=="list")
s42 <- unique(unlist(s42, recursive=FALSE))
s3 <- unique(c(s30,s31,s32))
hd <- sapply(s3, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 3)
s3 <- s3[hd]
s43 <- lapply(s3, function(x) OneNeighborhood(x))
if (class(s43)=="list")
s43 <- unique(unlist(s43, recursive=FALSE))
s4 <- unique(c(s40,s41,s42,s43))
hd <- sapply(s4, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 4)
s4 <- s4[hd]
}
else
if (CheckEdge(s1,NrRemainingEdges[j]))
{ mindist = mindist
s0c <- s0
s1c <- s1
s2c <- s2
s0 <- distsame(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$optimal
s1 <- distsame(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal1
s2 <- distsame(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal2
s30 <- lapply(s0, function(x) ThreeNeighborhood(x))
if (class(s30)=="list")
s30 <- unique(unlist(s30, recursive=FALSE))
s40 <- lapply(s0, function(x) FourNeighborhood(x))
if (class(s40)=="list")
s40 <- unique(unlist(s40, recursive=FALSE))
s31 <- lapply(s1, function(x) TwoNeighborhood(x))
if (class(s31)=="list")
s31 <- unique(unlist(s31, recursive=FALSE))
s41 <- lapply(s1, function(x) ThreeNeighborhood(x))
if (class(s41)=="list")
s41 <- unique(unlist(s41, recursive=FALSE))
s32 <- lapply(s2, function(x) OneNeighborhood(x))
if (class(s32)=="list")
s32 <- unique(unlist(s32, recursive=FALSE))
s42 <- lapply(s2, function(x) TwoNeighborhood(x))
if (class(s42)=="list")
s42 <- unique(unlist(s42, recursive=FALSE))
s3 <- unique(c(s30,s31,s32))
hd <- sapply(s3, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 3)
s3 <- s3[hd]
s43 <- lapply(s3, function(x) OneNeighborhood(x))
if (class(s43)=="list")
s43 <- unique(unlist(s43, recursive=FALSE))
s4 <- unique(c(s40,s41,s42,s43))
hd <- sapply(s4, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 4)
s4 <- s4[hd]
}
else
if (CheckEdge(s2,NrRemainingEdges[j]))
{ mindist = mindist + 1
s0c <- s0
s1c <- s1
s2c <- s2
s0 <- distincrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$optimal
s1 <- distincrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal1
s2 <- distincrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal2
s30 <- lapply(s0, function(x) ThreeNeighborhood(x))
if (class(s30)=="list")
s30 <- unique(unlist(s30, recursive=FALSE))
s40 <- lapply(s0, function(x) FourNeighborhood(x))
if (class(s40)=="list")
s40 <- unique(unlist(s40, recursive=FALSE))
s31 <- lapply(s1, function(x) TwoNeighborhood(x))
if (class(s31)=="list")
s31 <- unique(unlist(s31, recursive=FALSE))
s41 <- lapply(s1, function(x) ThreeNeighborhood(x))
if (class(s41)=="list")
s41 <- unique(unlist(s41, recursive=FALSE))
s32 <- lapply(s2, function(x) OneNeighborhood(x))
if (class(s32)=="list")
s32 <- unique(unlist(s32, recursive=FALSE))
s42 <- lapply(s2, function(x) TwoNeighborhood(x))
if (class(s42)=="list")
s42 <- unique(unlist(s42, recursive=FALSE))
s3 <- unique(c(s30,s31,s32))
hd <- sapply(s3, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 3)
s3 <- s3[hd]
s43 <- lapply(s3, function(x) OneNeighborhood(x))
if (class(s43)=="list")
s43 <- unique(unlist(s43, recursive=FALSE))
s4 <- unique(c(s40,s41,s42,s43))
hd <- sapply(s4, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 4)
s4 <- s4[hd]
}
else
{ mindist = mindist + 1
s0c <- s0
s1c <- s1
s2c <- s2
s0 <- distincrease1(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$optimal
s1 <- distincrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal1
s2 <- distincrease(s0c,s1c,s2c,s3,s4, NrRemainingEdges[j])$suboptimal2
s30 <- lapply(s0, function(x) ThreeNeighborhood(x))
if (class(s30)=="list")
s30 <- unique(unlist(s30, recursive=FALSE))
s40 <- lapply(s0, function(x) FourNeighborhood(x))
if (class(s40)=="list")
s40 <- unique(unlist(s40, recursive=FALSE))
s31 <- lapply(s1, function(x) TwoNeighborhood(x))
if (class(s31)=="list")
s31 <- unique(unlist(s31, recursive=FALSE))
s41 <- lapply(s1, function(x) ThreeNeighborhood(x))
if (class(s41)=="list")
s41 <- unique(unlist(s41, recursive=FALSE))
s32 <- lapply(s2, function(x) OneNeighborhood(x))
if (class(s32)=="list")
s32 <- unique(unlist(s32, recursive=FALSE))
s42 <- lapply(s2, function(x) TwoNeighborhood(x))
if (class(s42)=="list")
s42 <- unique(unlist(s42, recursive=FALSE))
s3 <- unique(c(s30,s31,s32))
hd <- sapply(s3, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 3)
s3 <- s3[hd]
s43 <- lapply(s3, function(x) OneNeighborhood(x))
if (class(s43)=="list")
s43 <- unique(unlist(s43, recursive=FALSE))
s4 <- unique(c(s40,s41,s42,s43))
hd <- sapply(s4, function(x) hamming.distance(currentgraph,as.vector(x)))
hd <- which(hd==mindist + 4)
s4 <- s4[hd]
}
}
return(list(Optimum=s0, MinDist=mindist))
}
## end of transitive.projection function
######################################################################################
## Other functions used in transitive.projection
remTwoEdges <- function(mat)
{
# remove 2 edge
n <- length(which(mat==1))
rnbhd <- list()
if (n > 2)
{
rep <- t(combn(which(mat==1),2))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0 # remove 2 edge
if (is.transitive(matswap, nrow(mat)))
{
rnbhd[[length(rnbhd) + 1]] <- matswap
}
}
}
return(rnbhd)
}
##--------------------------------------------------------------------------------
transSubGr <- function(adjmat)
{
n <- ncol(adjmat)
## transGr <- TwoNeighborhood(adjmat)
transGr <- remTwoEdges(adjmat)
edg <- lapply(transGr,function(x) which(x==1))
x1 <- which(adjmat==1)
if (any(sapply(edg,function(x) length(intersect(x,x1))==length(x)))==TRUE) return(transGr[[sample(which(sapply(edg, function(x) length(intersect(x,x1))==length(x))==TRUE),1)]])
else
return(matrix(0,ncol=n,nrow=n))
}
##--------------------------------------------------------------------------------
EdgeEk <- function(adjmat, ek)
{
g <- sapply(adjmat, function(x) x[ek]==1)
resTRUE <- adjmat[which(g==TRUE)]
resFALSE <- adjmat[which(g==FALSE)]
return(list(resT=resTRUE,resF=resFALSE))
}
##--------------------------------------------------------------------------------
# distance decreases then s0 s1 s2
distdecrease <- function(S0, S1, S2, S3, S4, ek)
{
s0 <- EdgeEk(S0,ek)$resT
s1 <- EdgeEk(S1,ek)$resT
s2 <- c(EdgeEk(S0,ek)$resF, EdgeEk(S2,ek)$resT)
return (list(optimal=s0,suboptimal1= s1,suboptimal2= s2))
}
##--------------------------------------------------------------------------------
# distance remains the same
distsame <- function(S0, S1, S2, S3, S4, ek)
{
s0 <- EdgeEk(S1,ek)$resT
s1 <- c(EdgeEk(S0,ek)$resF, EdgeEk(S2,ek)$resT)
s2 <- c(EdgeEk(S1,ek)$resF, EdgeEk(S3,ek)$resT)
return (list(optimal=s0,suboptimal1= s1,suboptimal2= s2))
}
##--------------------------------------------------------------------------------
# distance increases by 1
distincrease <- function(S0, S1, S2, S3, S4, ek)
{
s0 <- c(EdgeEk(S0,ek)$resF, EdgeEk(S2,ek)$resT)
s1 <- c(EdgeEk(S1,ek)$resF, EdgeEk(S3,ek)$resT)
s2 <- c(EdgeEk(S2,ek)$resF, EdgeEk(S4,ek)$resT)
return (list(optimal=s0,suboptimal1= s1,suboptimal2= s2))
}
##--------------------------------------------------------------------------------
# distance increase by 1
distincrease1 <- function(S0, S1, S2, S3, S4, ek)
{
s0 <- c(EdgeEk(S0,ek)$resF)
s1 <- c(EdgeEk(S1,ek)$resF, EdgeEk(S3,ek)$resT)
s2 <- c(EdgeEk(S2,ek)$resF, EdgeEk(S4,ek)$resT)
return (list(optimal=s0,suboptimal1= s1,suboptimal2= s2))
}
##--------------------------------------------------------------------------------
# Compute the one neighborhood of the input graph
OneNeighborhood <- function(mat)
{
# add 1 edges
matd1 <- mat
diag(matd1) <- 1
# n <- length(which(matd1==0))
anbhd <-list()
if (length(which(matd1==0)) > 0)
{
rep <- t(combn(which(matd1==0),1))
NrComb <- nrow(rep)
#fmat <- sapply(1:NrComb, function(x) mat[x,] <-1)
#ffmat <- sapply(fmat, function(x) is.transitive(x, nrow(fmat(x))))
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 1 # add 1 edge
if (is.transitive(matswap, nrow(mat)))
{
anbhd[[length(anbhd) + 1]] <- matswap
}
}
}
# remove 1 edge
# n <- length(which(mat==1))
rnbhd <- list()
if (length(which(mat==1)) > 0)
{
rep <- t(combn(which(mat==1),1))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0 # remove 1 edge
if (is.transitive(matswap, nrow(mat)))
{
rnbhd[[length(rnbhd) + 1]] <- matswap
}
}
}
# return(list(anbhd=anbhd,rnbhd=rnbhd))
return(c(anbhd,rnbhd))
}
##--------------------------------------------------------------------------------
# Compute two neighborhoods of the input graph
TwoNeighborhood <- function(mat)
{
# add 2 edges
matd1 <- mat
diag(matd1) <- 1
n <- length(which(matd1==0))
anbhd <-list()
if (n > 1)
{
rep <- t(combn(which(matd1==0),2))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <-mat
matswap[rep[i,]] <- 1 # add 2 edge
if (is.transitive(matswap, nrow(mat)))
{
anbhd[[length(anbhd) + 1]] <- matswap
}
}
}
# remove 2 edge
n <- length(which(mat==1))
rnbhd <- list()
if (n > 2)
{
rep <- t(combn(which(mat==1),2))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0 # remove 2 edge
if (is.transitive(matswap, nrow(mat)))
{
rnbhd[[length(rnbhd) + 1]] <- matswap
}
}
}
# add 1 edge remove 1 edges
matd1 <- mat
diag(matd1) <- 1
r <- length(which(mat==1))
a <- length(which(matd1==0))
ranbhd <-list()
if (r > 0 & a > 0)
{
rep <- t(combn(which(mat==1),1))
rep1 <- which(matd1==0)
NrComb <- nrow(rep)
NrComb1 <- length(rep1)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0
for (j in 1:NrComb1)
{
matswapz <- matswap
matswapz[rep1[j]] <- 1
if (is.transitive(matswapz, nrow(mat)))
{
ranbhd[[length(ranbhd) + 1]] <- matswapz
}
}
}
}
return(c(anbhd,rnbhd, ranbhd))
}
##--------------------------------------------------------------------------------
# Compute three neighborhoods of the input graph
ThreeNeighborhood <- function(mat)
{
SwapIndexOld <- function(vec,ind)
{
res=vec
if (res[ind]==1) res[ind]=0 else
res[ind]=1
return(res)
}
# add 3 edges
matd1 <- mat
diag(matd1) <- 1
n <- length(which(matd1==0))
anbhd <-list()
if (n > 2)
{
rep <- t(combn(which(matd1==0),3))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <-mat
matswap[rep[i,]] <- 1 # add 3 edges
if (is.transitive(matswap, nrow(mat)))
{
anbhd[[length(anbhd) + 1]] <- matswap
}
}
}
# remove 3 edges
n <- length(which(mat==1))
rnbhd <- list()
if (n > 2)
{
rep <- t(combn(which(mat==1),3))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0 # remove 3 edges
if (is.transitive(matswap, nrow(mat)))
{
rnbhd[[length(rnbhd) + 1]] <- matswap
}
}
}
# add 2 edges remove 1 edge
matd1 <- mat
diag(matd1) <- 1
a <- length(which(matd1==0))
r <- length(which(mat==1))
arnbhd <-list()
if (a > 1 & r > 0)
{
rep <- t(combn(which(matd1==0),2))
rep1 <- which(mat==1)
NrComb <- nrow(rep)
NrComb1 <- length(rep1)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 1
for (j in 1:NrComb1)
{
matswapz <- matswap
matswapz[rep1[j]] <- 0
if (is.transitive(matswapz, nrow(mat)))
{
arnbhd[[length(arnbhd) + 1]] <- matswapz
}
}
}
}
# add 1 edge remove 2 edges
matd1 <- mat
diag(matd1) <- 1
r <- length(which(mat==1))
a <- length(which(matd1==0))
ranbhd <-list()
if (r > 1 & a > 0)
{
rep <- t(combn(which(mat==1),2))
rep1 <- which(matd1==0)
NrComb <- nrow(rep)
NrComb1 <- length(rep1)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0
for (j in 1:NrComb1)
{
matswapz <- matswap
matswapz[rep1[j]] <- 1
if (is.transitive(matswapz, nrow(mat)))
{
ranbhd[[length(ranbhd) + 1]] <- matswapz
}
}
}
}
return(c(anbhd,rnbhd, arnbhd, ranbhd))
#s <- list(anbhd,rnbhd, arnbhd, ranbhd)
#return(list(anbhd,rnbhd, arnbhd, ranbhd))
}
##--------------------------------------------------------------------------------
# Compute the four neighborhood of the input graph
FourNeighborhood <- function(mat)
{
SwapIndexOld <- function(vec,ind)
{
res=vec
if (res[ind]==1) res[ind]=0 else
res[ind]=1
return(res)
}
# add 4 edges
matd1 <- mat
diag(matd1) <- 1
n <- length(which(matd1==0))
anbhd <-list()
if (n > 3)
{
rep <- t(combn(which(matd1==0),4))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <-mat
matswap[rep[i,]] <- 1 # add 4 edges
if (is.transitive(matswap, nrow(mat)))
{
anbhd[[length(anbhd) + 1]] <- matswap
}
}
}
# remove 4 edges
n <- length(which(mat==1))
rnbhd <- list()
if (n > 3)
{
rep <- t(combn(which(mat==1),4))
NrComb <- nrow(rep)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0 # remove 4 edges
if (is.transitive(matswap, nrow(mat)))
{
rnbhd[[length(rnbhd) + 1]] <- matswap
}
}
}
# add 3 edges remove 1 edge
matd1 <- mat
diag(matd1) <- 1
a <- length(which(matd1==0))
r <- length(which(mat==1))
arnbhd <-list()
if (a > 2 & r > 0)
{
rep <- t(combn(which(matd1==0),3))
rep1 <- which(mat==1)
NrComb <- nrow(rep)
NrComb1 <- length(rep1)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 1
for (j in 1:NrComb1)
{
matswapz <- matswap
matswapz[rep1[j]] <- 0
if (is.transitive(matswapz, nrow(mat)))
{
arnbhd[[length(arnbhd) + 1]] <- matswapz
}
}
}
}
# add 1 edge remove 3 edges
matd1 <- mat
diag(matd1) <- 1
r <- length(which(mat==1))
a <- length(which(matd1==0))
ranbhd <-list()
if (r > 2 & a > 0)
{
rep <- t(combn(which(mat==1),3))
rep1 <- which(matd1==0)
NrComb <- nrow(rep)
NrComb1 <- length(rep1)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 0
for (j in 1:NrComb1)
{
matswapz <- matswap
matswapz[rep1[j]] <- 1
if (is.transitive(matswapz, nrow(mat)))
{
ranbhd[[length(ranbhd) + 1]] <- matswapz
}
}
}
}
# add 2 edges remove 2 edge
matd1 <- mat
diag(matd1) <- 1
a <- length(which(matd1==0))
r <- length(which(mat==1))
aarrnbhd <-list()
if (a > 1 & r > 1)
{
rep <- t(combn(which(matd1==0),2))
rep1 <- t(combn(which(mat==1),2))
NrComb <- nrow(rep)
NrComb1 <- nrow(rep1)
for (i in 1:NrComb)
{
matswap <- mat
matswap[rep[i,]] <- 1
for (j in 1:NrComb1)
{
matswapz <- matswap
matswapz[rep1[j,]] <- 0
if (is.transitive(matswapz, nrow(mat)))
{
aarrnbhd[[length(aarrnbhd) + 1]] <- matswapz
}
}
}
}
return(c(anbhd,rnbhd, arnbhd, ranbhd, aarrnbhd))
}
##--------------------------------------------------------------------------------
## to check for transitivity
VecToMat <- function(vec,n)
{
mat=matrix(vec,nrow=n)
return(mat)
}
is.transitive <- function(graph,n, verb=FALSE)
{
# change to matrix representation
if(is.vector(graph)) mat=VecToMat(graph,n)
if(is.matrix(graph)) mat=graph
if(!is.matrix(graph) & !is.vector(graph)) stop("please input a vector or an adjacency matrix \n")
# check transitivity from this node
node.trans<-function(row)
{
if(sum(row)==0) return(TRUE)
tmat<- mat[as.logical(row),,drop=FALSE]
for(i in 1:dim(tmat)[1])
{
if( any(row < tmat[i,]) ) return(FALSE)
}
return(TRUE)
}
# do the check for all nodes
for(i in 1:n)
{
if( !node.trans(mat[i,]) ) return(FALSE)
if(verb) print(paste("checking node:", i))
}
return(TRUE)
}
##--------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.