Nothing
## titration response
## look for a monotone relationship across the mixtures
titrationResponse <- function(object1, qcThreshold1,
object2=NULL, qcThreshold2=NULL,
commonFeatures=TRUE,
label1=NULL, label2=NULL){
object1 <- checkObject(object1)
xs <- as.numeric(gsub("KW","",gsub(":.+","",colnames(object1$ct))))
## mixture samples
pA <- c(1,1,1,1,0,0.2,0.4,0.8)[xs[xs<9]]
pB <- c(0,0.2,0.4,0.8,1,1,1,1)[xs[xs<9]]
cts1 <- object1$ct[,xs<9]
qc1 <- object1$qc[,xs<9]
if(is.null(label1)) label1 <- "Method 1"
if(is.null(label2)) label2 <- "Method 2"
if(is.null(object2)){
## filter miRNAs with any NAs or poor quality values
i.rm <- which(apply(qc1<qcThreshold1,1,any) | apply(is.na(cts1),1,any))
cts1 <- cts1[-i.rm,]
## compute within replicate means for the mixed samples
iMixB <- which(pA==1 & pB>0)
iMixA <- which(pB==1 & pA>0)
repsA <- as.numeric(xs[iMixA])
repsB <- as.numeric(xs[iMixB])
ctsMixB <- t(apply(cts1[,iMixB],1,by,repsB,mean))
ctsMixA <- t(apply(cts1[,iMixA],1,by,repsA,mean))
## monotone in A
monoMixA <- apply(ctsMixA,1,function(x) (x[1]>x[2])&(x[2]>x[3]))
## monotone in B
monoMixB <- apply(ctsMixB,1,function(x) (x[1]>x[2])&(x[2]>x[3]))
## output table
tab <- matrix(nrow=2,ncol=2)
rownames(tab) <- c("Mono","Non-Mono")
colnames(tab) <- c("A","B")
tab[1,1] <- sum(monoMixA)
tab[1,2] <- sum(monoMixB)
tab[2,1] <- sum(!monoMixA)
tab[2,2] <- sum(!monoMixB)
## figure
## look at monotonicity by expression
iPureA <- which(pA==1 & pB==0)
iPureB <- which(pB==1 & pA==0)
ctspureA <- rowMeans(cts1[,iPureA])
ctspureB <- rowMeans(cts1[,iPureB])
## strat by difference in expression in pure samples
d <- c(ctspureA-ctspureB, ctspureB-ctspureA)
monoqc <- c(monoMixB,monoMixA)
ix <- sort(d,index.return=TRUE)$ix
d <- d[ix]
monoqc <- monoqc[ix]
dbins <- cut(d, breaks=quantile(d,probs=seq(0,1,0.05)))
monoqcBins <- unlist(lapply(split(monoqc,dbins),mean))
xx <- quantile(d,probs=seq(0,1,0.05))
xx <- (xx[2:length(xx)]+xx[1:(length(xx)-1)])/2
plot(x=xx,y=monoqcBins,pch=19,ylim=c(0,1),
xlab="Difference in Pure Sample Expression",
ylab="Proportion Monotone Increasing")
fit <- glm(monoqc~d,family=binomial(link=logit))
xx <- seq(min(xx),max(xx),by=0.01)
lines(x=xx,y=predict(fit,newdata=data.frame(d=xx),type="response"),
lwd=2, lty=3)
} else{
object2 <- checkObject(object2)
cts2 <- object2$ct[,xs<9]
qc2 <- object2$qc[,xs<9]
## filter miRNAs with any NAs or poor quality values
i.rm1 <- which(apply(qc1<qcThreshold1,1,any) | apply(is.na(cts1),1,any))
i.rm2 <- which(apply(qc2<qcThreshold2,1,any) | apply(is.na(cts2),1,any))
if(commonFeatures){
i.rm <- union(i.rm1,i.rm2)
cts1 <- cts1[-i.rm,]
cts2 <- cts2[-i.rm,]
} else{
cts1 <- cts1[-i.rm1,]
cts2 <- cts2[-i.rm2,]
}
## compute within replicate means for the mixed samples
iMixB <- which(pA==1 & pB>0)
iMixA <- which(pB==1 & pA>0)
repsA <- as.numeric(xs[iMixA])
repsB <- as.numeric(xs[iMixB])
cts1MixB <- t(apply(cts1[,iMixB],1,by,repsB,mean))
cts1MixA <- t(apply(cts1[,iMixA],1,by,repsA,mean))
cts2MixB <- t(apply(cts2[,iMixB],1,by,repsB,mean))
cts2MixA <- t(apply(cts2[,iMixA],1,by,repsA,mean))
## monotone in A
monoMixA1 <- apply(cts1MixA,1,function(x) (x[1]>x[2])&(x[2]>x[3]))
monoMixA2 <- apply(cts2MixA,1,function(x) (x[1]>x[2])&(x[2]>x[3]))
## monotone in B
monoMixB1 <- apply(cts1MixB,1,function(x) (x[1]>x[2])&(x[2]>x[3]))
monoMixB2 <- apply(cts2MixB,1,function(x) (x[1]>x[2])&(x[2]>x[3]))
## output table
tab <- matrix(nrow=2,ncol=4)
rownames(tab) <- c("Mono","Non-Mono")
colnames(tab) <- paste(rep(c(label1,label2),2),
c("A","A","B","B"), sep=":")
tab[1,1] <- sum(monoMixA1)
tab[1,2] <- sum(monoMixA2)
tab[1,3] <- sum(monoMixB1)
tab[1,4] <- sum(monoMixB2)
tab[2,1] <- sum(!monoMixA1)
tab[2,2] <- sum(!monoMixA2)
tab[2,3] <- sum(!monoMixB1)
tab[2,4] <- sum(!monoMixB2)
## figure
## look at monotonicity by expression
iPureA <- which(pA==1 & pB==0)
iPureB <- which(pB==1 & pA==0)
cts1pureA <- rowMeans(cts1[,iPureA])
cts1pureB <- rowMeans(cts1[,iPureB])
cts2pureA <- rowMeans(cts2[,iPureA])
cts2pureB <- rowMeans(cts2[,iPureB])
## strat by difference in expression in pure samples
d1 <- c(cts1pureA-cts1pureB, cts1pureB-cts1pureA)
monoqc1 <- c(monoMixB1,monoMixA1)
d2 <- c(cts2pureA-cts2pureB, cts2pureB-cts2pureA)
monoqc2 <- c(monoMixB2,monoMixA2)
ix1 <- sort(d1,index.return=TRUE)$ix
d1 <- d1[ix1]
monoqc1 <- monoqc1[ix1]
ix2 <- sort(d2,index.return=TRUE)$ix
d2 <- d2[ix2]
monoqc2 <- monoqc2[ix2]
dbins1 <- cut(d1, breaks=quantile(c(d1,d2),probs=seq(0,1,0.05)))
dbins2 <- cut(d2, breaks=quantile(c(d1,d2),probs=seq(0,1,0.05)))
monoqcBins1 <- unlist(lapply(split(monoqc1,dbins1),mean))
monoqcBins2 <- unlist(lapply(split(monoqc2,dbins2),mean))
xx <- quantile(c(d1,d2),probs=seq(0,1,0.05))
xx <- (xx[2:length(xx)]+xx[1:(length(xx)-1)])/2
plot(x=xx,y=monoqcBins1,pch=19,ylim=c(0,1),
xlab="Difference in Pure Sample Expression",
ylab="Proportion Monotone Increasing")
points(x=xx,y=monoqcBins2,pch=22)
fit1 <- glm(monoqc1~d1,family=binomial(link=logit))
fit2 <- glm(monoqc2~d2,family=binomial(link=logit))
xx <- seq(min(xx),max(xx),by=0.01)
lines(x=xx,y=predict(fit1,newdata=data.frame(d1=xx),
type="response"), lwd=2, lty=1)
lines(x=xx,y=predict(fit2,newdata=data.frame(d2=xx),
type="response"), lwd=2, lty=3)
legend("topleft", c(label1,label2), pch=c(19,22), lty=c(1,3))
}
return(tab)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.