Nothing
# functions to get regional counts
# get counts for a given regions
#
# S4 FUNCTIONS
#
#' Get regional counts for given GRanges or GRangesList object
#'
#' Convert \code{\link{methylRaw}}, \code{\link{methylRawDB}},
#' \code{\link{methylRawList}}, \code{\link{methylRawListDB}},
#' \code{\link{methylBase}} or \code{\link{methylBaseDB}} object into regional
#' counts for a given \code{\link{GRanges}} or \code{\link{GRangesList}} object.
#' @param object a \code{\link{methylRaw}}, \code{\link{methylRawDB}},
#' \code{\link{methylRawList}}, \code{\link{methylRawListDB}},
#' \code{\link{methylBase}} or \code{\link{methylBaseDB}} object
#'
#' NOTE: The given regions (Granges/GrangesList object) will be orderd based on
#' chromosome and position before searching for overlaps, so the resulting
#' methylKit object might have a different ording than expected. See details
#' section for the reasoning of this choice and ways to still get custom
#' ordering of regions.
#'
#' @param regions a GRanges or GRangesList object. Make sure that the GRanges
#' objects are
#' unique in chr,start,end and strand columns.You can make them unique by
#' using unique() function.
#' @param cov.bases number minimum bases covered per region (Default:0).
#' Only regions with base coverage above this threshold are returned.
#' @param strand.aware if set to TRUE only CpGs that match the strand of
#' the region will be summarized. (default:FALSE)
#' @param chunk.size Number of rows to be taken as a chunk for processing
#' the \code{methylDB} objects (default: 1e6)
#' @param save.db A Logical to decide whether the resulting object should be
#' saved as flat file database or not, default: explained in Details sections
#' @param ... optional Arguments used when save.db is TRUE
#'
#' \code{suffix}
#' A character string to append to the name of the output flat
#' file database,
#' only used if save.db is true,
#' default actions: append \dQuote{_regions} to current filename
#' if database already exists or generate new file with
#' filename \dQuote{sampleID_regions} or
#' \dQuote{methylBase_filtered} dependent on input object
#'
#' \code{dbdir}
#' The directory where flat file database(s) should be stored,
#' defaults
#' to getwd(), working directory for newly stored databases
#' and to same directory for already existing database
#'
#' \code{dbtype}
#' The type of the flat file database, currently only option is "tabix"
#' (only used for newly stored databases)
#'
#' @return a new methylRaw,methylBase or methylRawList object. If \code{strand.aware} is
#' set to FALSE (default). Even though the resulting object will have
#' the strand information of \code{regions} it will still contain
#' methylation information from both strands.
#'
#' @usage regionCounts(object,regions,cov.bases=0,strand.aware=FALSE,chunk.size,save.db,...)
#' @examples
#' data(methylKit)
#'
#' # get the windows of interest as a GRanges object, this can be any set
#' # of genomic locations
#' library(GenomicRanges)
#' my.win=GRanges(seqnames="chr21",
#' ranges=IRanges(start=seq(from=9764513,by=10000,length.out=20),width=5000) )
#'
#' # getting counts per region
#' regional.methylRaw=regionCounts(object=methylRawList.obj, regions=my.win,
#' cov.bases=0,strand.aware=FALSE)
#'
#' @section Details:
#' The given regions (Granges/GrangesList object) will be orderd based on
#' chromosome and position before searching for overlaps, so the resulting
#' methylKit object might have a different ording than expected. We are doing
#' this is to ensure that resulting output is consistent for in-memory and
#' database based objects, as database based objects always have to be sorted to
#' enable tabix indexing and providing fast random access.
#'
#' If you to still want get a custom ordering of the output regions you can
#' access the single regions in any object providing your indices to the
#' \code{\link{select}} or \code{\link{extract}} functions.
#'
#' The parameter \code{chunk.size} is only used when working with
#' \code{methylRawDB}, \code{methylBaseDB} or \code{methylRawListDB} objects,
#' as they are read in chunk by chunk to enable processing large-sized objects
#' which are stored as flat file database.
#' Per default the chunk.size is set to 1M rows, which should work for most
#' systems. If you encounter memory problems or
#' have a high amount of memory available feel free to adjust the \code{chunk.size}.
#'
#' The parameter \code{save.db} is per default TRUE for methylDB objects as
#' \code{methylRawDB}, \code{methylBaseDB} or \code{methylRawListDB},
#' while being per default FALSE for \code{methylRaw}, \code{methylBase} or
#' \code{methylRawList}. If you wish to save the result of an
#' in-memory-calculation as flat file database or if the size of the database
#' allows the calculation in-memory,
#' then you might want to change the value of this parameter.
#'
#' @export
#' @docType methods
#' @rdname regionCounts
setGeneric("regionCounts",
function(object,regions,cov.bases=0,strand.aware=FALSE,chunk.size=1e6,save.db=FALSE,...)
standardGeneric("regionCounts") )
# GETs regional counts for given GRanges object
# RETURNS a new methylRaw object
# @param object a \code{methylRaw} object
# @param regions a GRanges object.
#' @rdname regionCounts
#' @aliases regionCounts,methylRaw,GRanges-method
setMethod("regionCounts", signature(object="methylRaw",regions="GRanges"),
function(object,regions,cov.bases,strand.aware,save.db=FALSE,...){
#require(GenomicRanges)
# sort regions
regions <- sortSeqlevels(regions)
regions <- sort(regions,ignore.strand=TRUE)
# overlap object with regions
# convert object to GRanges
if(!strand.aware){
g.meth=as(object,"GRanges")
strand(g.meth)="*"
mat=IRanges::as.matrix( findOverlaps(regions,g.meth ) )
#mat=matchMatrix( findOverlaps(regions,g.meth ) )
}else{
mat=IRanges::as.matrix( findOverlaps(regions,as(object,"GRanges")) )
#mat=matchMatrix( findOverlaps(regions,as(object,"GRanges")) )
}
#require(data.table)
# create a temporary data.table row ids from regions and counts from object
coverage=numCs=numTs=id=covered=NULL
df=data.frame(id = mat[, 1], getData(object)[mat[, 2], c(5, 6, 7)])
dt=data.table(df)
#dt=data.table(id=mat[,1],object[mat[,2],c(6,7,8)] ) worked with data.table 1.7.7
# use data.table to sum up counts per region
sum.dt=dt[,list(coverage=sum(coverage),
numCs =sum(numCs),
numTs =sum(numTs),covered=length(numTs)),by=id]
sum.dt=sum.dt[sum.dt$covered>=cov.bases,]
temp.df=as.data.frame(regions) # get regions to a dataframe
# look for values with "name" in it, eg. "tx_name" or "name"
# valuesList = names(values(regions))
# nameid = valuesList[grep (valuesList, pattern="name")]
#create id string for the new object to be returned
#ids have to be unique and we can not assume GRanges objects will
#have a name attribute
if("name" %in% names(temp.df))
{
new.ids=paste(temp.df[sum.dt$id,"seqnames"],temp.df[sum.dt$id,"start"],
temp.df[sum.dt$id,"end"],temp.df[sum.dt$id,"name"],sep=".")
}else{
new.ids=paste(temp.df[sum.dt$id,"seqnames"],temp.df[sum.dt$id,"start"],
temp.df[sum.dt$id,"end"],sep=".")
}
#create a new methylRaw object to return
new.data=data.frame(#id =new.ids,
chr =temp.df[sum.dt$id,"seqnames"],
start =temp.df[sum.dt$id,"start"],
end =temp.df[sum.dt$id,"end"],
strand =temp.df[sum.dt$id,"strand"],
coverage=sum.dt$coverage,
numCs =sum.dt$numCs,
numTs =sum.dt$numTs)
if(!save.db) {
new("methylRaw",new.data,sample.id=object@sample.id,
assembly=object@assembly,context=object@context,
resolution="region")
} else {
# catch additional args
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
# if(!( "dbtype" %in% names(args) ) ){
# dbtype <- "tabix"
# } else { dbtype <- args$dbtype }
if(!( "suffix" %in% names(args) ) ){
suffix <- paste0("_","regions")
} else {
suffix <- args$suffix
suffix <- paste0("_",suffix)
}
# create methylRawDB
obj <- makeMethylRawDB(df=new.data,dbpath=dbdir,dbtype="tabix",sample.id=paste0(object@sample.id,suffix),
assembly=object@assembly,context=object@context,resolution="region")
obj@sample.id <- object@sample.id
obj
}
}
)
#' @rdname regionCounts
#' @aliases regionCounts,methylBase,GRanges-method
setMethod("regionCounts", signature(object="methylBase",regions="GRanges"),
function(object,regions,cov.bases,strand.aware,save.db=FALSE,...){
#require(GenomicRanges)
# sort regions
regions <- sortSeqlevels(regions)
regions <- sort(regions,ignore.strand=TRUE)
# overlap object with regions
# convert object to GRanges
if(!strand.aware){
g.meth=as(object,"GRanges")
strand(g.meth)="*"
mat=IRanges::as.matrix( findOverlaps(regions,g.meth ) )
#mat=matchMatrix( findOverlaps(regions,g.meth ) )
}else{
mat=IRanges::as.matrix( findOverlaps(regions,as(object,"GRanges")) )
#mat=matchMatrix( findOverlaps(regions,as(object,"GRanges")) )
}
#require(data.table)
# create a temporary data.table row ids from regions and counts from object
df=data.frame(id = mat[, 1], getData(object)[mat[, 2], 5:ncol(object) ])
dt=data.table(df)
#dt=data.table(id=mat[,1],object[mat[,2],c(6,7,8)] ) worked with data.table 1.7.7
coverage=.SD=numTs=id=numTs1=covered=NULL
# use data.table to sum up counts per region
sum.dt=dt[,c(lapply(.SD,sum, na.rm=T),covered=length(numTs1)),by=id]
sum.dt=sum.dt[sum.dt$covered>=cov.bases,]
temp.df=as.data.frame(regions) # get regions to a dataframe
# look for values with "name" in it, eg. "tx_name" or "name"
# valuesList = names(values(regions))
# nameid = valuesList[grep (valuesList, pattern="name")]
#set all zero coverage tiles to missing
for ( j in seq(2,ncol(sum.dt),by=3) ){
data.table::set(sum.dt, which(sum.dt[[j]]==0),j:(j+2),NA)
}
#create a new methylBase object to return
new.data=data.frame(#id =new.ids,
chr =temp.df[sum.dt$id,"seqnames"],
start =temp.df[sum.dt$id,"start"],
end =temp.df[sum.dt$id,"end"],
strand =temp.df[sum.dt$id,"strand"],
as.data.frame(sum.dt[,c(2:(ncol(sum.dt)-1)),with=FALSE]),stringsAsFactors=FALSE)
if(strand.aware & !(object@destranded) ){destranded=FALSE}else{destranded=TRUE}
if(!save.db) {
new("methylBase",new.data,sample.ids=object@sample.ids,
assembly=object@assembly,context=object@context,treatment=object@treatment,
coverage.index=object@coverage.index,numCs.index=object@numCs.index,
numTs.index=object@numTs.index,destranded=destranded,
resolution="region")
} else {
# catch additional args
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
if(!( "suffix" %in% names(args) ) ){
suffix <- "_regions"
} else {
suffix <- paste0("_",args$suffix)
}
# create methylBaseDB
makeMethylBaseDB(df=new.data,dbpath=dbdir,dbtype="tabix",
sample.ids=object@sample.ids,
assembly=object@assembly,context=object@context,
treatment=object@treatment,
coverage.index=object@coverage.index,
numCs.index=object@numCs.index,
numTs.index=object@numTs.index,destranded=destranded,
resolution="region", suffix=suffix )
}
}
)
# RETURNS a new methylRawList object
# gets regional counts for all elements in methylRawList for given regions
# MAKE SURE an element of the list, which will be a set of GRanges rows,
# are not on different chromosomes and strands
# Also, make sure id column of returned methylRaw object is unique
# you can add refseq id to the id column: chr.start.end.refseqid
# @param object a \code{methylRaw} object
# @param regions a GRangesList object.
#' @rdname regionCounts
#' @aliases regionCounts,methylRaw,GRangesList-method
# assume that each name of the element in the GRangesList is unique and
setMethod("regionCounts", signature(object="methylRaw",regions="GRangesList"),
function(object,regions,cov.bases,strand.aware,save.db=FALSE,...){
#require(GenomicRanges)
# combine and sort GRanges from List
regions <- unlist(regions)
regions <- sortSeqlevels(regions)
regions <- sort(regions,ignore.strand=TRUE)
regions <- unique(regions)
# overlap object with regions
# convert object to GRanges
#mat=matchMatrix( findOverlaps(regions,as(object,"GRanges")) )
if(!strand.aware){
g.meth=as(object,"GRanges")
strand(g.meth)="*"
mat=IRanges::as.matrix( findOverlaps(regions,g.meth ) )
#mat=matchMatrix( findOverlaps(regions,g.meth ) )
}else{
mat=IRanges::as.matrix( findOverlaps(regions,as(object,"GRanges")) )
#mat=matchMatrix( findOverlaps(regions,as(object,"GRanges")) )
}
#require(data.table)
# create a temporary data.table row ids from regions and counts from object
df=data.frame(id = mat[, 1], getData(object)[mat[, 2], c(5, 6, 7)])
dt=data.table(df)
#dt=data.table(id=mat[,1],object[mat[,2],c(6,7,8)] ) worked with data.table 1.7.7
coverage=NULL
numCs=NULL
numTs=NULL
id=NULL
# use data.table to sum up counts per region
sum.dt=dt[,list(coverage=sum(coverage),
numCs =sum(numCs),
numTs =sum(numTs),covered=length(numTs)),by=id]
sum.dt=sum.dt[sum.dt$covered>=cov.bases,]
temp.df=as.data.frame(regions) # get regions to a dataframe
# look for values with "name" in it, eg. "tx_name" or "name"
# valuesList = names(values(regions))
# nameid = valuesList[grep (valuesList, pattern="name")]
#create id string for the new object to be returned
#ids have to be unique and we can not assume GRanges objects will
#have a name attribute
if("name" %in% names(temp.df))
{
new.ids=paste(temp.df[sum.dt$id,"seqnames"],temp.df[sum.dt$id,"start"],
temp.df[sum.dt$id,"end"],temp.df[sum.dt$id,"name"],sep=".")
}else{
new.ids=paste(temp.df[sum.dt$id,"seqnames"],temp.df[sum.dt$id,"start"],
temp.df[sum.dt$id,"end"],sep=".")
}
#create a new methylRaw object to return
new.data=data.frame(#id =new.ids,
chr =temp.df[sum.dt$id,"seqnames"],
start =temp.df[sum.dt$id,"start"],
end =temp.df[sum.dt$id,"end"],
strand =temp.df[sum.dt$id,"strand"],
coverage=sum.dt$coverage,
numCs =sum.dt$numCs,
numTs =sum.dt$numTs)
if(!save.db) {
new("methylRaw",new.data,sample.id=object@sample.id,
assembly=object@assembly,context=object@context,
resolution="region")
} else {
# catch additional args
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
# if(!( "dbtype" %in% names(args) ) ){
# dbtype <- "tabix"
# } else { dbtype <- args$dbtype }
if(!( "suffix" %in% names(args) ) ){
suffix <- paste0("_","regions")
} else {
suffix <- args$suffix
suffix <- paste0("_",suffix)
}
# create methylRawDB
obj <- makeMethylRawDB(df=new.data,dbpath=dbdir,dbtype="tabix",sample.id=paste0(object@sample.id,suffix),
assembly=object@assembly,context=object@context,resolution="region")
obj@sample.id <- object@sample.id
obj
}
}
)
# Note: some genes do not have intron, need to take care of it.
#' @rdname regionCounts
#' @aliases regionCounts,methylBase,GRangesList-method
setMethod("regionCounts", signature(object="methylBase",regions="GRangesList"),
function(object,regions,cov.bases,strand.aware,save.db=FALSE,...){
#require(GenomicRanges)
# combine and sort GRanges from List
regions <- unlist(regions)
regions <- sortSeqlevels(regions)
regions <- sort(regions,ignore.strand=TRUE)
regions <- unique(regions)
# overlap object with regions
# convert object to GRanges
if(!strand.aware){
g.meth=as(object,"GRanges")
strand(g.meth)="*"
mat=IRanges::as.matrix( findOverlaps(regions,g.meth ) )
#mat=matchMatrix( findOverlaps(regions,g.meth ) )
}else{
mat=IRanges::as.matrix( findOverlaps(regions,as(object,"GRanges")) )
#mat=matchMatrix( findOverlaps(regions,as(object,"GRanges")) )
}
#require(data.table)
# create a temporary data.table row ids from regions and counts from object
df=data.frame(id = mat[, 1], getData(object)[mat[, 2], 5:ncol(object) ])
dt=data.table(df)
#dt=data.table(id=mat[,1],object[mat[,2],c(6,7,8)] ) worked with data.table 1.7.7
id=.SD=numTs1=NULL
# use data.table to sum up counts per region
# treat missing values as they had zero coverage
sum.dt=dt[,c(lapply(.SD,sum,na.rm=T),covered=length(numTs1)),by=id]
sum.dt=sum.dt[sum.dt$covered>=cov.bases,]
temp.df=as.data.frame(regions) # get regions to a dataframe
# look for values with "name" in it, eg. "tx_name" or "name"
# valuesList = names(values(regions))
# nameid = valuesList[grep (valuesList, pattern="name")]
#set all zero coverage tiles to missing
for ( j in seq(2,ncol(sum.dt),by=3) ){
data.table::set(sum.dt, which(sum.dt[[j]]==0),j:(j+2),NA)
}
#create a new methylBase object to return
new.data=data.frame(#id =new.ids,
chr =temp.df[sum.dt$id,"seqnames"],
start =temp.df[sum.dt$id,"start"],
end =temp.df[sum.dt$id,"end"],
strand =temp.df[sum.dt$id,"strand"],
as.data.frame(sum.dt[,c(2:(ncol(sum.dt)-1)),with=FALSE]),stringsAsFactors=FALSE)
if(strand.aware & !(object@destranded) ){destranded=FALSE}else{destranded=TRUE}
if(!save.db) {
new("methylBase",new.data,sample.ids=object@sample.ids,
assembly=object@assembly,context=object@context,treatment=object@treatment,
coverage.index=object@coverage.index,numCs.index=object@numCs.index,
numTs.index=object@numTs.index,destranded=destranded,
resolution="region")
} else {
# catch additional args
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
if(!( "suffix" %in% names(args) ) ){
suffix <- "_regions"
} else {
suffix <- paste0("_",args$suffix)
}
# create methylBaseDB
makeMethylBaseDB(df=new.data,dbpath=dbdir,dbtype="tabix",sample.ids=object@sample.ids,
assembly=object@assembly,context=object@context,treatment=object@treatment,
coverage.index=object@coverage.index,numCs.index=object@numCs.index,
numTs.index=object@numTs.index,destranded=destranded,
resolution="region", suffix=suffix )
}
}
)
# GETs regional counts for given GRanges object
# RETURNS a new methylRawList object
# @param object a \code{methylRawList} object
# @param regions a GRanges object.
#' @rdname regionCounts
#' @aliases regionCounts,methylRawList,GRanges-method
setMethod("regionCounts", signature(object="methylRawList",regions="GRanges"),
function(object,regions,cov.bases,strand.aware,save.db=FALSE,...){
if(!save.db) {
outList=list()
for(i in 1:length(object))
{
obj = regionCounts(object = object[[i]],
regions=regions,
cov.bases,strand.aware)
outList[[i]] = obj
}
myobj=new("methylRawList", outList,treatment=object@treatment)
myobj
} else {
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
outList = lapply(object,regionCounts, regions=regions,
cov.bases,strand.aware,save.db = TRUE, dbdir = basename(dbdir) ,...)
new("methylRawListDB", outList,treatment=object@treatment)
}
}
)
# GETs regional counts for given GRangesList object
# RETURNS a new methylRawList object
# @param object a \code{methylRawList} object
# @param regions a GRangesList object.
#' @rdname regionCounts
#' @aliases regionCounts,methylRawList,GRangesList-method
setMethod("regionCounts", signature(object="methylRawList",
regions="GRangesList"),
function(object,regions,cov.bases,strand.aware,save.db=FALSE,...){
if(!save.db) {
outList=list()
for(i in 1:length(object))
{
obj = regionCounts(object = object[[i]],
regions=regions,
cov.bases,strand.aware)
outList[[i]] = obj
}
myobj=new("methylRawList", outList,treatment=object@treatment)
myobj
} else {
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
outList = lapply(object,regionCounts, regions=regions,
cov.bases,strand.aware,save.db = TRUE, dbdir = basename(dbdir) ,...)
new("methylRawListDB", outList,treatment=object@treatment)
}
}
)
#' Get methylated/unmethylated base counts for tilling windows
#'
#' The function summarizes methylated/unmethylated base counts over tilling
#' windows accross genome. This function can be used when differential
#' methylation analysis is preferable to tilling windows instead of base pairs.
#'
#' @param object \code{\link{methylRaw}}, \code{\link{methylRawDB}},
#' \code{\link{methylRawList}}, \code{\link{methylRawListDB}},
#' \code{\link{methylBase}} or \code{\link{methylBaseDB}} object containing
#' base pair resolution methylation information
#' @param win.size an integer for the size of the tiling windows
#' @param step.size an integer for the step size of tiling windows
#' @param cov.bases minimum number of bases to be covered in a given window
#' @param mc.cores number of cores to use when processing \code{methylDB}
#' objects, default: 1, but always 1 for Windows)
#' @param save.db A Logical to decide whether the resulting object should be
#' saved as flat file database or not, default: explained in Details sections
#' @param ... optional Arguments used when save.db is TRUE
#'
#' \code{suffix}
#' A character string to append to the name of the output flat
#' file database,
#' only used if save.db is true,
#' default actions: append \dQuote{_tiled} to current filename
#' if database already exists or generate new file with
#' filename \dQuote{sampleID_tiled} or
#' \dQuote{methylBase_tiled} dependent on input object
#'
#' \code{dbdir}
#' The directory where flat file database(s) should be stored,
#' defaults to getwd(), working directory for newly stored
#' databases and to same directory for already existing
#' database
#'
# \code{dbtype}
# The type of the flat file database, currently only option is
# "tabix" (only used for newly stored databases)
#'
#' @usage tileMethylCounts(object,win.size=1000,step.size=1000,cov.bases=0,mc.cores=1,save.db,...)
#' @return \code{methylRaw},\code{methylBase} or \code{methylRawList} object
#' @export
#' @examples
#' data(methylKit)
#'
#' tiled.methylRaw=tileMethylCounts(object=methylRawList.obj,win.size=1000,
#' step.size=1000,cov.bases=0)
#'
#'
#' @section Details:
#' The parameter \code{chunk.size} is only used when working with
#' \code{methylRawDB}, \code{methylBaseDB} or \code{methylRawListDB} objects,
#' as they are read in chunk by chunk to enable processing large-sized objects
#' which are stored as flat file database.
#' Per default the chunk.size is set to 1M rows, which should work for most
#' systems. If you encounter memory problems or
#' have a high amount of memory available feel free to adjust the \code{chunk.size}.
#'
#' The parameter \code{save.db} is per default TRUE for methylDB objects as
#' \code{methylRawDB}, \code{methylBaseDB} or \code{methylRawListDB},
#' while being per default FALSE for \code{methylRaw}, \code{methylBase} or
#' \code{methylRawList}. If you wish to save the result of an
#' in-memory-calculation as flat file database or if the size of the database
#' allows the calculation in-memory,
#' then you might want to change the value of this parameter.
#'
#' @docType methods
#' @rdname tileMethylCounts-methods
setGeneric("tileMethylCounts",
function(object,win.size=1000,step.size=1000,cov.bases=0,mc.cores=1,save.db=FALSE,...)
standardGeneric("tileMethylCounts") )
#' @aliases tileMethylCounts,methylRaw-method
#' @rdname tileMethylCounts-methods
setMethod("tileMethylCounts", signature(object="methylRaw"),
function(object,win.size,step.size,cov.bases,save.db=FALSE,...){
g.meth =as(object,"GRanges")
#chrs =IRanges::levels(seqnames(g.meth))
chrs =as.character(unique(seqnames(g.meth)))
#widths =seqlengths(g.meth) # this doesn't work with BioC 3.0
widths =sapply(chrs,function(x,y) max(end(y[seqnames(y)==x,])),g.meth )# lengths of max bp in each chr
all.wins=GRanges()
for(i in 1:length(chrs))
{
# get max length of feature covered chromosome
max.length=max(IRanges::end(g.meth[seqnames(g.meth)==chrs[i],]))
#get sliding windows with covered CpGs
numTiles=floor( (max.length-(win.size-step.size) )/step.size )+1
numTiles=ifelse(numTiles<1, 1,numTiles)
temp.wins=GRanges(seqnames=rep(chrs[i],numTiles),
ranges=IRanges(start=1+0:(numTiles-1)*step.size,
width=rep(win.size,numTiles)) )
all.wins=suppressWarnings(c(all.wins,temp.wins))
}
#catch additional args
args <- list(...)
if( !( "suffix" %in% names(args)) ){
suffix <- "tiled"
} else { suffix <- args$suffix }
regionCounts(object,all.wins,cov.bases,strand.aware=FALSE,save.db=save.db,suffix=suffix,... = ...)
}
)
#' @aliases tileMethylCounts,methylRawList-method
#' @rdname tileMethylCounts-methods
setMethod("tileMethylCounts", signature(object="methylRawList"),
function(object,win.size,step.size,cov.bases,save.db=FALSE,...){
if (save.db) {
#catch additional args
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
new.list=lapply(object,tileMethylCounts,win.size,step.size,cov.bases,save.db=save.db,dbdir=basename(dbdir),... = ...)
new("methylRawListDB", new.list,treatment=object@treatment)
} else {
new.list=lapply(object,tileMethylCounts,win.size,step.size,cov.bases)
new("methylRawList", new.list,treatment=object@treatment)
}
})
#' @aliases tileMethylCounts,methylBase-method
#' @rdname tileMethylCounts-methods
setMethod("tileMethylCounts", signature(object="methylBase"),
function(object,win.size,step.size,cov.bases,save.db=FALSE,...){
g.meth =as(object,"GRanges")
#chrs =IRanges::levels(seqnames(g.meth))
chrs =as.character(unique(seqnames(g.meth)))
#widths =seqlengths(g.meth)
widths =sapply(chrs,function(x,y) max(end(y[seqnames(y)==x,])),g.meth )# lengths of max bp in each chr
all.wins=GRanges()
for(i in 1:length(chrs))
{
# get max length of feature covered chromosome
max.length=max(IRanges::end(g.meth[seqnames(g.meth)==chrs[i],]))
#get sliding windows with covered CpGs
numTiles=floor( (max.length-(win.size-step.size) )/step.size )+1
numTiles=ifelse(numTiles<1, 1,numTiles)
temp.wins=GRanges(seqnames=rep(chrs[i],numTiles),
ranges=IRanges(start=1+0:(numTiles-1)*step.size,
width=rep(win.size,numTiles)) )
all.wins=suppressWarnings(c(all.wins,temp.wins))
}
#catch additional args
args <- list(...)
if( !( "suffix" %in% names(args)) ){
suffix <- "tiled"
} else { suffix <- args$suffix }
regionCounts(object,all.wins,cov.bases,strand.aware=FALSE,save.db=save.db,suffix=suffix,... = ...)
}
)
# back up code:
# annotation of methylation states by genes
# including promoter, intron, exon, nearest cpgi and cpgi shore.
# valPerIndex=function(query, subject, col="cov"){
# cov.per=value.per.location(query,subject,col=col)
# all.ind=1:length(query)
# rm=data.frame(ind=all.ind[!all.ind %in% (cov.per[,1])],
# val=rep(0,length(all.ind[!all.ind %in% (cov.per[,1])]) ),
# numRows=rep(0,length(all.ind[!all.ind %in% (cov.per[,1])]) ) )
# cov.per2=rbind(cov.per,rm)
# cov.per3=data.frame(cov.per2, tx_id=names(query)[cov.per2[,1]])
# return(cov.per3)
# }
#
# meth.ratio=function(meth.idx, cov.idx){
# if(identical(meth.idx[,1], cov.idx[,1])){
# ratio = meth.idx[,2]/cov.idx[,2]
# names(ratio) = meth.idx[,4]
# return(ratio)
# }
# else stop("index does not match")
# }
#
# # using exons
# meth.idx.exons=valPerIndex(exonRanges, g.meth, col="methCs")
# cov.idx.exons=valPerIndex(exonRanges, g.meth, col="cov")
#
# exon.meth.ratio=meth.ratio(meth.idx.exons, cov.idx.exons)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.