R/aggregateByTaxonomy.R

Defines functions aggTax aggregateByTaxonomy

Documented in aggregateByTaxonomy aggTax

#' Aggregates a MRexperiment object or counts matrix to a particular level.
#' 
#' Using the featureData information in the MRexperiment, calling aggregateByTaxonomy on a
#' MRexperiment and a particular featureData column (i.e. 'genus') will aggregate counts
#' to the desired level using the aggfun function (default colSums). Possible aggfun alternatives
#' include colMeans and colMedians.
#' 
#' @param obj A MRexperiment object or count matrix.
#' @param lvl featureData column name from the MRexperiment object or if count matrix object a vector of labels.
#' @param alternate Use the rowname for undefined OTUs instead of aggregating to "no_match".
#' @param norm Whether to aggregate normalized counts or not.
#' @param log Whether or not to log2 transform the counts - if MRexperiment object.
#' @param aggfun Aggregation function.
#' @param sl scaling value, default is 1000.
#' @param out Either 'MRexperiment' or 'matrix'
#' @param featureOrder Hierarchy of levels in taxonomy as fData colnames
#' @param returnFullHierarchy Boolean value to indicate return single column of fData or all columns of hierarchy
#' @return An aggregated count matrix.
#' @aliases aggTax
#' @rdname aggregateByTaxonomy
#' @export
#' @examples
#' 
#' data(mouseData)
#' aggregateByTaxonomy(mouseData[1:100,],lvl="class",norm=TRUE,aggfun=colSums)
#' # not run
#' # aggregateByTaxonomy(mouseData,lvl="class",norm=TRUE,aggfun=colMedians)
#' # aggTax(mouseData,lvl='phylum',norm=FALSE,aggfun=colSums)
#' 
aggregateByTaxonomy<-function(obj,lvl,alternate=FALSE,norm=FALSE,log=FALSE,aggfun = colSums,sl=1000,featureOrder=NULL,returnFullHierarchy=TRUE,out="MRexperiment"){
  if(class(obj)=="MRexperiment"){
    mat = MRcounts(obj,norm=norm,log=log,sl=sl)
    if(length(lvl)==1) levels = as.character(fData(obj)[,lvl])
    else levels = as.character(lvl)
  } else {
    mat = obj
    levels = as.character(lvl)
    if(length(levels)!=nrow(mat)) stop("If input is a count matrix, lvl must be a vector of length = nrow(count matrix)")
  }
  if(!(out%in%c("MRexperiment","matrix"))){
    stop("The variable out must either be 'MRexperiment' or 'matrix'")
  }
  
  nafeatures = is.na(levels)
  if(length(nafeatures)>0){
    if(alternate==FALSE){
      levels[nafeatures] = "no_match"
    } else {
      levels[nafeatures] = paste("OTU_",rownames(obj)[nafeatures],sep="")
    }
  }
  grps = split(seq_along(levels),levels)
  
  newMat = array(NA,dim=c(length(grps),ncol(obj)))
  for(i in seq_along(grps)){
    newMat[i,] = aggfun(mat[grps[[i]],,drop=FALSE])
  }
  rownames(newMat) = names(grps)
  colnames(newMat) = colnames(obj)
  if(out=='matrix') return(newMat)
  if(out=='MRexperiment'){
    if(returnFullHierarchy){

      if(is.null(featureOrder)){
        featureOrder <- colnames(fData(obj))
      }
      
      taxa = featureData(obj)[match(names(grps), fData(obj)[,lvl]),featureOrder[1:which(featureOrder == lvl)]]
      featureNames(taxa) = names(grps)
    } else{
       taxa = data.frame(names(grps))
       colnames(taxa) = "Taxa"
       rownames(taxa) = names(grps)
       taxa = as(taxa,"AnnotatedDataFrame")
    }

    if(class(obj)=="MRexperiment"){
      pd = phenoData(obj)
      newObj = newMRexperiment(newMat,featureData=taxa,phenoData=pd)
    } else {
      newObj = newMRexperiment(newMat,featureData=taxa)
    }
    return(newObj)
  }
}
#' @rdname aggregateByTaxonomy
#' @export
aggTax<-function(obj,lvl,alternate=FALSE,norm=FALSE,log=FALSE,aggfun = colSums,sl=1000,featureOrder=NULL,returnFullHierarchy=TRUE,out='MRexperiment'){
  aggregateByTaxonomy(obj,lvl,alternate=alternate,norm=norm,log=log,aggfun = aggfun,sl=sl,featureOrder=featureOrder,returnFullHierarchy=returnFullHierarchy,out=out)
}

Try the metagenomeSeq package in your browser

Any scripts or data that you put into this service are public.

metagenomeSeq documentation built on Nov. 8, 2020, 5:34 p.m.